全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

有限域上的k-型高斯正规基的对偶基及其乘法表

, PP. 824-829

Keywords: 有限域,k型高斯正规基,对偶基,循环矩阵,乘法表

Full-Text   Cite this paper   Add to My Lib

Abstract:

设q为素数的方幂,N是Fqn在Fq上的k-型高斯正规基.得到了k型高斯正规基的几个性质,并利用这些性质给出了N的对偶基的简洁证明,以及N与其对偶基乘法表对应元素之间的关系.

References

[1]  [1] Mnllin R, Onyszchuk I, Vanstone S, et al. Optimal normal bases over GF(pn)\[J\]. Discrete Appl Math,1988/1999,22:149-161.
[2]  Liao Q Y, Sun Q. Normal bases and their dual-bases over finite fields\[J\]. Acta Math Sinica,2006,22(3):845-848.
[3]  廖群英. 有限域上一类特殊的对偶基\[J\]. 四川大学学报:自然科学版,2005,42(1):41-46.
[4]  苏丹丹,廖群英. 有限域上一类特殊对偶基的推广\[J\]. 四川大学学报:自然科学版,2011,48(3):499-504.
[5]  Gao S H. Normal Bases over Finite Fields\[D\]. Waterloo:Ontario,1993.
[6]  Wassermann A. Konstruktion von normal basen\[J\]. Bayreuther Mathemathsche Schriften,1990,31:155-164.
[7]  Wan Z X, Zhou K. On the complexity of the dualbases of a type Ⅰ optimalnormal bases\[J\]. Finite Fields and Their Applications,2007,13(4):411-417.
[8]  廖群英,苏丹丹,付萍. 有限域上的2-型高斯正规基\[J\]. 四川大学学报:自然科学版,2010,47(6):1221-1224.
[9]  李俊,黄琴,李波,等. 有限域上的k-型高斯正规基及其对偶基\[J\]. 四川师范大学学报:自然科学版,2011,34(3):289-295.
[10]  [1 廖群英,孙琦. 有限域上存在弱自对偶正规基的一个充要条件\[J\]. 数学年刊,2008,29(4):479-484.
[11]  [1 廖群英,孙琦. 有限域上最优正规基的乘法表\[J\]. 数学学报,2005,48(5):947-954.
[12]  [1 Wan Z X. Lectures on Finite Fields and Galois Rings\[M\]. Singapore:World Science,2003.
[13]  [1 Christopoulou M, Garefalakis T, Panario D, et al. The trace of an optimal mormal element and low complexity normal bases\[J\]. Designs,Codes and Cryptography,2008,49:199-215.
[14]  [1 Christopoulou M, Garefalakis T, Panario D, et al. Gauss perieds as constrctions of low complexity normal bases\[J\]. Designs,Codes and Cryptography,doi:10.1007/s10623-011-9490-4.
[15]  [1 Liao Q Y, You L. Low complexity of a class of normal bases over finite fields\[J\]. Finite Fields and Their Appl,2011,17(1):1-14.
[16]  [1 Liao Q Y. On primitive optimal normal element of finite fields\[J\]. Math Research and Their Appl,2010,30(5):869-875.
[17]  [1 Liao Q Y. On the distribution of normal bases over finite fields\[J\]. Adv Math,2010,39(2):207-211.
[18]  [1 廖群英,李波. 二元域上对称循环矩阵的非退化性\[J\]. 四川师范大学学报:自然科学版,2011,34(3):422-426.
[19]  [1 孙琦. 关于有限域上正规基乘法表的一个算法\[J\]. 四川大学学报:自然科学版,2003,40(3):442-446.
[20]  Liao Q Y,Feng K Q. On the complexity of the normal bases via prime Gauss period over finite fields\[J\]. Jrl Syst SciComplexity,2009,22(3):9-21.
[21]  廖群英,孙琦. 有限域上存在弱自对偶正规基的一个充要条件\[J\]. 数学年刊,2007,28A(2):273-280.
[22]  Gao X H, Lenstra H W. Optimal normal bases\[J\]. Disigns, Codes and Cryptograph,1992,2:315-323.
[23]  Lidl R, Niederreiter H. Finite fields\[M\]. Cambrige:Cambrige University Press,1987.
[24]  Cohen S D, Hachenberger D. Primitive, freenss, normal and trace\[J\]. Discrete Mathmatics,2000,14(2):135-144.
[25]  Nogami Y, Nasu H, Morikawa Y, Uehara S. A method for constracting a self-dual basis in odd characteristic extention fields\[J\]. Finite Fields and Their Applications,2008,14(6):867-876.
[26]  Gao X H. Abelian groups, Gauss periods, and normal basses\[J\]. Finite Fields and Their Applications,2001,7(2):149-164.
[27]  田甜,戚文峰. 有限域上互反本原正规元的存在性\[J\]. 数学学报,2006,49(3):657-668.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133