[1 Wan Z X. Lectures on Finite Fields and Galois Rings\[M\]. Singapore:World Science,2003.
[13]
[1 Christopoulou M, Garefalakis T, Panario D, et al. The trace of an optimal mormal element and low complexity normal bases\[J\]. Designs,Codes and Cryptography,2008,49:199-215.
[14]
[1 Christopoulou M, Garefalakis T, Panario D, et al. Gauss perieds as constrctions of low complexity normal bases\[J\]. Designs,Codes and Cryptography,doi:10.1007/s10623-011-9490-4.
[15]
[1 Liao Q Y, You L. Low complexity of a class of normal bases over finite fields\[J\]. Finite Fields and Their Appl,2011,17(1):1-14.
[16]
[1 Liao Q Y. On primitive optimal normal element of finite fields\[J\]. Math Research and Their Appl,2010,30(5):869-875.
[17]
[1 Liao Q Y. On the distribution of normal bases over finite fields\[J\]. Adv Math,2010,39(2):207-211.
Gao X H, Lenstra H W. Optimal normal bases\[J\]. Disigns, Codes and Cryptograph,1992,2:315-323.
[23]
Lidl R, Niederreiter H. Finite fields\[M\]. Cambrige:Cambrige University Press,1987.
[24]
Cohen S D, Hachenberger D. Primitive, freenss, normal and trace\[J\]. Discrete Mathmatics,2000,14(2):135-144.
[25]
Nogami Y, Nasu H, Morikawa Y, Uehara S. A method for constracting a self-dual basis in odd characteristic extention fields\[J\]. Finite Fields and Their Applications,2008,14(6):867-876.
[26]
Gao X H. Abelian groups, Gauss periods, and normal basses\[J\]. Finite Fields and Their Applications,2001,7(2):149-164.