Yan Q Y, Hou S H, Feng D S, et al. Locally distributed feedback stabilization of nonuniform Euler-Bernoulli beam[J]. Acta Automatica Sinica,2005,31(5):772-778.
[3]
Geist B, Mclaughin J R. The effect of structural damping on nodes for the Euler-Bernoulli beam: a specific case study[J]. Appl Math Lett,1994,7(3):51-55.
[4]
Park J Y, Kang J R. Energy decay estimates for the Bernoulli-Euler-type equation with a local degenerate dissipation[J]. Appl Math Lett,2010,23:1274-1279.
[5]
Crandall M G. Asymptotic behavior of solutions of evolution equations[C]//Dafermos C M. Nonlinear Evolution Equations. New York:Academic Press,1995,38:545-568.
[6]
Haraux A. Stabilization of trajectories for some weakly damped hyperbolic equations[J]. J Diff Eqns,1985,59:145-154.
[7]
Zuazua E. Exponential decay for the semilinear wave equation with locally distributed damping[J]. Commun PDE,1990,15:205-235.
[8]
Guo B Z. Riesz basis property and exponential stability of controlled Euler-Bernoulli beam equations with variable coefficients[J]. SIAM J Control Optim,2002,40(6):1905-1923.
[9]
Chen Y L, Xu G Q. Exponential stability of uniform Euler-Bernoulli beams with non-collocated boundary controllers[J]. J Math Anal Appl,2014,409(2):851-867.
[10]
[1 Yoshizawa T. Stability Theory and the Existence of Periodic Solutions[M]. Berlin:Springer-Verlag,1975:201-206.
[1 Ma T, Wang S H. Bifurcation theory and applications[C]//Chua L O. World Scientific Series on Nonlinear Science. Singapore:World Scientific,2005,A53.