全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类带平均值约束的二元方程组的定态分歧

, PP. 820-823

Keywords: 线性全连续场,谱定理,Lyapunov-Schmidt约化,带平均值约束二元方程组,分歧解

Full-Text   Cite this paper   Add to My Lib

Abstract:

应用线性全连续场的谱定理、Lyapunov-Schmidt约化方法以及隐函数定理,研究了一类带平均值约束的二元方程组的定态分歧,并计算出了当系统参数λ处于何种情况下,该方程组会产生分歧解φ.

References

[1]  [1] 马天,汪守宏. 非线性演化方程的稳定性与分歧[M]. 北京:科学出版社,2007.
[2]  Yan Q Y, Hou S H, Feng D S, et al. Locally distributed feedback stabilization of nonuniform Euler-Bernoulli beam[J]. Acta Automatica Sinica,2005,31(5):772-778.
[3]  Geist B, Mclaughin J R. The effect of structural damping on nodes for the Euler-Bernoulli beam: a specific case study[J]. Appl Math Lett,1994,7(3):51-55.
[4]  Park J Y, Kang J R. Energy decay estimates for the Bernoulli-Euler-type equation with a local degenerate dissipation[J]. Appl Math Lett,2010,23:1274-1279.
[5]  Crandall M G. Asymptotic behavior of solutions of evolution equations[C]//Dafermos C M. Nonlinear Evolution Equations. New York:Academic Press,1995,38:545-568.
[6]  Haraux A. Stabilization of trajectories for some weakly damped hyperbolic equations[J]. J Diff Eqns,1985,59:145-154.
[7]  Zuazua E. Exponential decay for the semilinear wave equation with locally distributed damping[J]. Commun PDE,1990,15:205-235.
[8]  Guo B Z. Riesz basis property and exponential stability of controlled Euler-Bernoulli beam equations with variable coefficients[J]. SIAM J Control Optim,2002,40(6):1905-1923.
[9]  Chen Y L, Xu G Q. Exponential stability of uniform Euler-Bernoulli beams with non-collocated boundary controllers[J]. J Math Anal Appl,2014,409(2):851-867.
[10]  [1 Yoshizawa T. Stability Theory and the Existence of Periodic Solutions[M]. Berlin:Springer-Verlag,1975:201-206.
[11]  [1 李志祥. Liapunov方法在概周期系统研究中的应用[J]. 科学通报,1989,34(12):889-891.
[12]  [1 刘静行. 一类非线性微分方程组的概周期解[J]. 广西师范大学学报:自然科学版,1994,12(3):21-24.
[13]  [1 Ma T, Wang S H. Bifurcation theory and applications[C]//Chua L O. World Scientific Series on Nonlinear Science. Singapore:World Scientific,2005,A53.
[14]  [1 钟承奎,范先令,陈文塬. 非线性泛函分析[M]. 兰州:甘肃人民出版社,1981.
[15]  [1 张伟年,杜正东,徐冰. 常微分方程[M]. 北京:高等教育出版社,2004.
[16]  [1 张锦炎,冯贝叶. 常微分方程几何理论与分支问题[M]. 北京:北京大学出版社,1997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133