全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Banach空间中广义向量混合变分不等式的扰动Levitin-Polyak适定性

, PP. 811-819

Keywords: 广义向量混合变分不等式,扰动Levitin-Polyak适定性,gap函数

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tykhonov适定性与Levitin-Polyak适定性在研究各类最优化问题和变分不等式算法的收敛性中起着重要的作用.近年来,随着向量优化问题的出现和日渐成熟,对适定性的研究也开始在向量优化问题中进行.首先,提出了Banach空间中广义向量混合变分不等式扰动Levitin-Polyak适定性的概念,研究了广义向量混合变分不等式扰动Levitin-Polyak适定性的度量性质.其次,定义了广义向量混合变分不等式的gap函数,建立了广义向量混合变分不等式的扰动Levitin-Polyak适定性与其对应的gap函数相关的极小化问题的适定性的等价关系.到目前为止还没有关于广义向量混合变分不等式的扰动Levitin-Polyak适定性的结果,因此研究此类问题是非常有意义的.

References

[1]  [1] Tykhonov A N. On the stability of the functional optimization problem\[J\]. USSRJ Comput Math Phys,1996,6:631-634.
[2]  Levitin E S, Polyak B T. Convergence of minimizing sequences in conditional extremum problem\[J\]. Soveit Math Dokl,1996,7:764-767.
[3]  Zolezzi T. Extendwell-posedness of optimization problems\[J\]. J Optim Theory Appl,1996,91:257-266.
[4]  Zolezzi T. Well-posedness criteriain optimization with application to the calculus of variations\[J\].Nonlinear Anal,1995,25:437-453.
[5]  Zolezzi T. Well-posedness of optimal control problems\[J\]. Control and Cybernetics,1994,23:289-301.
[6]  Huang X X, Yang X Q. Generalized LevitinPolyakwell-posedness in constrained optimization\[J\]. SIAM J Optim,2006,17:243-258..
[7]  Lucchetti R, Patrone F. A characterization of Tykhono vwell-posedness for minimum problems with applications to variational inequalities\[J\]. Numer Funct Anal Optim,1981,3(4):461-476.
[8]  Jiang B, Zhang J, Huang X X. Levitin-Polyak well-posedness of generalized quasivariational inequalities with functional constraints\[J\]. Nonlinear Anal,2009,70:1492-1503.
[9]  Huang X X, Yang X Q. Levitin-Polyak well-posedness in constrained vector optimization problems\[J\]. J Glob Optim,2007,37:287-304.
[10]  [1 黄学祥. 最优化问题的强适定性及其相关问题\[J\]. 重庆师范大学学报:自然科学版,2004,21(1):3-4.
[11]  [1 Ceng L C, Hadjisavvas N, Schaible S. Well-posedness for mixed quasivariational-like inequalities\[J\]. J Optim Theory Appl,2008,139:109-125.
[12]  [1 Peng L H, Li C, Yao J C. Well-posedness of a class of perturbed optimization problems in Banachs paces\[J\]. J Math Anal Appl,2008,346:3384-394.
[13]  [1 Fang Y P, Hu R. Parametric well-posedness for variational inequalities defined by bifunctions\[J\]. Comput Math Appl,2007,53:1306-1316.
[14]  [1 Fang Y P, Hu R. Estimates of approximating solutions and well-posedness for variational inequalities\[J\]. Math Meth Oper Res,2007,65:281-291.
[15]  [1 Petursel A, Rus I A, Yao J C. Well-posedness in the generalized sense of the fixed point problems for multivalued operators\[J\]. Taiwan J Math,2007,11:903-914.
[16]  [1 Anh L Q, Khanh P Q, Van D T M. Well-posedness for vector quasiequilibria\[J\]. Taiwan J Math,2009,13:713-737.
[17]  [1 Peng J W, Wu S Y. The generalized Tykhono vwell-posedness for system of vector quasi-equilibrium problems\[J\]. Optim Lett,2010,4:501-512.
[18]  [1 Yu J, Yang H, Yu C. Well-posed Ky Fan’s point, quasi-variational inequality and Nash equilibrium problems\[J\]. Nonlinear Anal,2007,66:777-790.
[19]  [1 Durea M. Scalariazation for pointwise well-posedness vectorial problems\[J\]. Math Meth Oper Res,2007,66:409-418.
[20]  Crespi G P, Papalia M, Rocca M. Extended well-posedness of quasiconvex vector optimization problems\[J\]. J Optim Theory Appl,2009,141:285-297.
[21]  Huang X X. Extended and strongly extended well-posedness of set-valued optimization problems\[J\]. Math Meth Oper Res,2001,53:101-116.
[22]  Miglierina E, Molho E. Well-posedness and convexity in vector optimization\[J\]. Math Meth Oper Res,2003,58:375-385.
[23]  Miglierina E, Molho E, Rocca M. Well-posedness and scalarization in vector optimization\[J\]. J Optim Theory Appl,2005,126(2):391-409.
[24]  Deng S. Coercivity properties and well-posedness in vectoro ptimization\[J\]. RAIRO Oper Res,2003,37:195-208.
[25]  Huang X X. Extended well-posed properties of vector optimization problems\[J\]. J Optim Theory Appl,2000,106:165-182.
[26]  Fang Y P, Huang N J. Well-posedness for vector variational inequality and constrained vector optimization\[J\]. Taiwan J Math,2007,11:1287-1300.
[27]  Crespi G P, Guerraggio A, Rocca M. Well-posedness in vector optimization problems and vector variational inequalities\[J\]. J Optim Theory Appl,2007,132:213-226.
[28]  Lignola M B, Morgan J. Vectorquasi-variational inequalities:approximate solutions and well-posedness\[J\]. J Convex Anal,2006,13:373-384.
[29]  Long X J, Huang N J, Teo K L. Levitin-Polyak well-posedness for equilibrium problems with functional constraints\[J\]. J Inequal Appl,2008.doi:10.1155/2008/657329.
[30]  Li S J, Li M H. Levitin-Polyakwell-posedness of vector equilibrium problems\[J\]. Taiwan J Math,2008,69:125-140.
[31]  Fang Y P, Huang N J, Yao J C. Well-posed of mixed variational inequalities,inclusion problems and fixed-point problems\[J\]. J Glob Optim,2008,41:117-133.
[32]  Fang Y P, Huang N J, Yao J C. Well-posed by perturbations of mixed variational inequalities in Banach spaces\[J\]. Euro J Oper Res,2010,201:682-692.
[33]  Hu R, Fang Y P. Levitin-Polyakwell-posedness of variational inequalities\[J\]. Nonlinear Anal,2010,72:373-381.
[34]  Kuratowski K. Topology\[M\]. New York:Academic Press,1968.
[35]  Xu Z, Zhu D L, Huang X X. Levitin-Polyak well-posedness in generalized vector variational inequality problem with functional constraints\[J\]. Math Meth Oper Res,2008,67:505-524.
[36]  Chen G Y, Yang X Q, Yu H. Anonlinear scalarization function and generalized quasi-vector equilibrium problems\[J\]. J Glob Optim,2005,32:451-466.
[37]  Gerth C, Weidner P. Nonconvex separation theorem and some applications in vector optimization\[J\]. J Optim Theory Appl,1990,67:297-320.
[38]  陈光亚. 向量优化问题某些基础理论及其发展\[J\]. 重庆师范大学学报:自然科学版,2005,22(3):6-9.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133