[1] Tykhonov A N. On the stability of the functional optimization problem\[J\]. USSRJ Comput Math Phys,1996,6:631-634.
[2]
Levitin E S, Polyak B T. Convergence of minimizing sequences in conditional extremum problem\[J\]. Soveit Math Dokl,1996,7:764-767.
[3]
Zolezzi T. Extendwell-posedness of optimization problems\[J\]. J Optim Theory Appl,1996,91:257-266.
[4]
Zolezzi T. Well-posedness criteriain optimization with application to the calculus of variations\[J\].Nonlinear Anal,1995,25:437-453.
[5]
Zolezzi T. Well-posedness of optimal control problems\[J\]. Control and Cybernetics,1994,23:289-301.
[6]
Huang X X, Yang X Q. Generalized LevitinPolyakwell-posedness in constrained optimization\[J\]. SIAM J Optim,2006,17:243-258..
[7]
Lucchetti R, Patrone F. A characterization of Tykhono vwell-posedness for minimum problems with applications to variational inequalities\[J\]. Numer Funct Anal Optim,1981,3(4):461-476.
[8]
Jiang B, Zhang J, Huang X X. Levitin-Polyak well-posedness of generalized quasivariational inequalities with functional constraints\[J\]. Nonlinear Anal,2009,70:1492-1503.
[9]
Huang X X, Yang X Q. Levitin-Polyak well-posedness in constrained vector optimization problems\[J\]. J Glob Optim,2007,37:287-304.
[1 Ceng L C, Hadjisavvas N, Schaible S. Well-posedness for mixed quasivariational-like inequalities\[J\]. J Optim Theory Appl,2008,139:109-125.
[12]
[1 Peng L H, Li C, Yao J C. Well-posedness of a class of perturbed optimization problems in Banachs paces\[J\]. J Math Anal Appl,2008,346:3384-394.
[13]
[1 Fang Y P, Hu R. Parametric well-posedness for variational inequalities defined by bifunctions\[J\]. Comput Math Appl,2007,53:1306-1316.
[14]
[1 Fang Y P, Hu R. Estimates of approximating solutions and well-posedness for variational inequalities\[J\]. Math Meth Oper Res,2007,65:281-291.
[15]
[1 Petursel A, Rus I A, Yao J C. Well-posedness in the generalized sense of the fixed point problems for multivalued operators\[J\]. Taiwan J Math,2007,11:903-914.
[16]
[1 Anh L Q, Khanh P Q, Van D T M. Well-posedness for vector quasiequilibria\[J\]. Taiwan J Math,2009,13:713-737.
[17]
[1 Peng J W, Wu S Y. The generalized Tykhono vwell-posedness for system of vector quasi-equilibrium problems\[J\]. Optim Lett,2010,4:501-512.
[18]
[1 Yu J, Yang H, Yu C. Well-posed Ky Fan’s point, quasi-variational inequality and Nash equilibrium problems\[J\]. Nonlinear Anal,2007,66:777-790.
[19]
[1 Durea M. Scalariazation for pointwise well-posedness vectorial problems\[J\]. Math Meth Oper Res,2007,66:409-418.
[20]
Crespi G P, Papalia M, Rocca M. Extended well-posedness of quasiconvex vector optimization problems\[J\]. J Optim Theory Appl,2009,141:285-297.
[21]
Huang X X. Extended and strongly extended well-posedness of set-valued optimization problems\[J\]. Math Meth Oper Res,2001,53:101-116.
[22]
Miglierina E, Molho E. Well-posedness and convexity in vector optimization\[J\]. Math Meth Oper Res,2003,58:375-385.
[23]
Miglierina E, Molho E, Rocca M. Well-posedness and scalarization in vector optimization\[J\]. J Optim Theory Appl,2005,126(2):391-409.
[24]
Deng S. Coercivity properties and well-posedness in vectoro ptimization\[J\]. RAIRO Oper Res,2003,37:195-208.
[25]
Huang X X. Extended well-posed properties of vector optimization problems\[J\]. J Optim Theory Appl,2000,106:165-182.
[26]
Fang Y P, Huang N J. Well-posedness for vector variational inequality and constrained vector optimization\[J\]. Taiwan J Math,2007,11:1287-1300.
[27]
Crespi G P, Guerraggio A, Rocca M. Well-posedness in vector optimization problems and vector variational inequalities\[J\]. J Optim Theory Appl,2007,132:213-226.
[28]
Lignola M B, Morgan J. Vectorquasi-variational inequalities:approximate solutions and well-posedness\[J\]. J Convex Anal,2006,13:373-384.
[29]
Long X J, Huang N J, Teo K L. Levitin-Polyak well-posedness for equilibrium problems with functional constraints\[J\]. J Inequal Appl,2008.doi:10.1155/2008/657329.
[30]
Li S J, Li M H. Levitin-Polyakwell-posedness of vector equilibrium problems\[J\]. Taiwan J Math,2008,69:125-140.
[31]
Fang Y P, Huang N J, Yao J C. Well-posed of mixed variational inequalities,inclusion problems and fixed-point problems\[J\]. J Glob Optim,2008,41:117-133.
[32]
Fang Y P, Huang N J, Yao J C. Well-posed by perturbations of mixed variational inequalities in Banach spaces\[J\]. Euro J Oper Res,2010,201:682-692.
[33]
Hu R, Fang Y P. Levitin-Polyakwell-posedness of variational inequalities\[J\]. Nonlinear Anal,2010,72:373-381.
[34]
Kuratowski K. Topology\[M\]. New York:Academic Press,1968.
[35]
Xu Z, Zhu D L, Huang X X. Levitin-Polyak well-posedness in generalized vector variational inequality problem with functional constraints\[J\]. Math Meth Oper Res,2008,67:505-524.
[36]
Chen G Y, Yang X Q, Yu H. Anonlinear scalarization function and generalized quasi-vector equilibrium problems\[J\]. J Glob Optim,2005,32:451-466.
[37]
Gerth C, Weidner P. Nonconvex separation theorem and some applications in vector optimization\[J\]. J Optim Theory Appl,1990,67:297-320.