|
- 2015
微流控法制备用于电泳显示微胶囊的微液珠研究
|
Abstract:
本文基于微流控技术,提出一种制备电泳显示液微胶囊的新方法,解决了传统电泳微胶囊制备方法中颗粒粒径不均匀、影响显示器件的显示性能及其驱动波形设计等问题。实验中使用了两种玻璃汇聚流通道(小型和大型),外相溶液为1.5%明胶阿拉伯胶混合溶液,内相为四氯乙烯溶液。当小型通道和大型通道外相溶液流速与内相溶液体积流速比分别为21和10:6时,可以得到液滴平均直径分别为47 μm和315 μm的均匀的微液珠。同时,该方法可以精确控制微胶囊粒径大小,通过调节内外相流速,可以得到粒径在40 μm至375 μm范围内的大小均匀的微胶囊。与传统机械搅拌法制备的微液珠(52 ±18.81 μm)相比,微流控法制备的微液珠(45±0.28 μm)粒径分布得到了很大改善。该方法为电泳显示器显示效果的改善提供了可行方法。
: In this paper, a novel method of creating monodisperse microdroplets for electrophoretic display microcapsules application is introduced. The microcapsules fabricated by common agitation are lack of uniformity, which result in difficulty in driving waveform design. In this report, we fabricated the narrow distributed microdroplets of EPD materials using two types of microchannel with the outer phase of 15% gelatin and Arabic gum solution and the inner phase of tetrachloroethylene. Controlling the flow rate ratio of the inner to outer phase at 21 (small channel) and 10:6 (big channel), we could obtain monodisperse microdroplets with diameter of 47 ?m and 315 ?m, respectively. At the same, the size of the microdroplet could be precisely controlled by the fluidic flow rates. The size distribution of the microdroplets fabricated by microfluidic channels was (45±0.28) μm which was highly improved comparing to the droplets created by agitation with the size of (52±18.81) μm. This implies that the microfluidics is a reliable technology which would be a feasible way to improve the quality and performance of the electrophoretic displays
[1] | Garstecki P, Fuerstman MJ, Whitesides GM.Nonlinear dynamics of a flow-focusing bubble generator: an inverted dripping faucet[J].Physical review letters, 2005, 94(23):4502-4502 |
[2] | Anna S L, Bontoux N, Stone H A.Formation of dispersions using "flow focusing" in microchannels[J].Applied Physics Letters, 2003, 82(3):364-366 |
[3] | Maruyama T, Matsushita H, Uchida J, et al.Liquid membrane operations in a microfluidic device for selective separation of metal ions[J].Analytical Chemistry, 2004, 76(15):4495-4500 |
[4] | Thorsen T, Roberts R W, Arnold F H.Dynamic pattern formation in a vesicle-generating microfluidic device[J].Physical review letters, 2001, 86(18):4163-4166 |
[5] | Shui L, Eijkel J, van den Berg A.Multiphase flow in microfluidic system-control and applications of droplets and interfaces[J].Advances in colloid and interface chemistry, 2007, 133(1):35-49 |
[6] | Garstecki P, Gitlin I, DiLuzio W, et al.Formation of monodisperse bubbles in a microfluidic flow-focusing device[J].Applied Physics Letters, 2004, 85(13):2649-2651 |
[7] | 赵晓鹏, 郭慧琳, 王建平, 等.电子墨水与电子纸[M]. 北京:化学工业出版社, 2005. 3-10. |
[8] | Foris P L, Brown R W, Philips S P Jr.Capsule manufacrure[P]. US, 1978, 4087376. |
[9] | Schubert F E.Suspension for use in electrophoretic image display system [P]. US, 1995, 5380362. |
[10] | Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Garstecki P.Generation of monodisperse particles by using microfluidics: control over size,shape,and composition[J].Angew Chem Int Ed Engl, 2005, 44(5):724-727 |
[11] | Comiskey B, Albert J, Yoshizawa H, et al.An electrophoretic ink for all-printed reflective electronic displays[J].Nature, 1988, 394:253-255 |
[12] | Sugiura S, Nakajima M, Yamamoto K, et al.Preparation characteristics of water-in-oil-in-water multiple emulsions using microchannel emulsification[J].Journal of Colloid and Interface Science, 2004, 270(1):221-228 |