全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种高维数据集的子空间聚类算法

, PP. 55-63

Keywords: 聚类算法,子空间聚类,基因芯片

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一个基于密度和网格的子空间聚类算法.该算法运用启发式的密度连通思想来确定一维空间初始簇的生成,使用自底向上的搜索策略来发现存在子空间中的簇.实验结果表明,在处理高维数据时,在不牺牲算法的其他性能的同时提高了聚类的有效性,降低了对输入数据顺序及噪音数据的敏感性.

References

[1]  ACM SIGKDD Interna tiona l Conference on Know ledge D iscov ery and DataM in ing. San D iego, USA: ACM Press, 1999: 84-
[2]  [ Nagesh H, Go il S, Choudhary A. Adaptive g rids for c lusteringm assive da ta sets[ C] / / Proceed ing s o f SIAM Internationa lConference
[3]  on DataM in ing. SIAM, 2001: 477- 493.
[4]  [ Ka iling K, K riege lH-P, Kr-ge r P. Density-connected subspace cluster ing for high-d imensional data[ C ] / / Proceed ings of the
[5]  4th SIAM In ternational Conference on DataM ining. Lake Buena V ia ta, FL, 2004: 246-257.
[6]  [ Agraw a l R, Gehrke J, Gunopulos D. Autom a tic subspace cluster ing of h igh d im ensiona l data fo r data m ining app lications
[7]  [ C] / / Proceed ings o f the 1998 ACM-SIGMOD Interna tiona l Conference onM anagement o f Data. Sea ttle, W ash ing ton: ACM
[8]  Press, 1998, 6: 94-105.
[9]  [ G runwa ld P D. M ode l selection based on m in imum description length[ J]. Journal ofM athem atica l Psycho logy, 2000, 44:
[10]  133-152.
[11]  [ Cheng C H, Fu A W-C, ZhangY. Entropy-based subspace c luste ring for m in ing num er ica l data[ C] / / Proceed ings of the 5 th
[12]  [ Procopiuc CM, JonesM, Aga rw al P K, et a.l A monte car lo a lgo rithm fo r fast pro jective c luster ing [ C ] / / Proceed ings o f the
[13]  2002 ACM SIGMOD In ternational Conference onM anag em ent of Data. M ad ison: ACM Press, 2002: 418- 427.
[14]  [ G lom baM, Urszu laM-K. IBUSCA: a gr id-based bo ttom-up subspace cluster ing algor ithm [ C] / / Proceed ing s of the 6 th International
[15]  Conference on Inte lligent Sy stem s Design and Applications. USA: IEEE Compu ter Soc iety, 2006: 671-676.
[16]  [ Agga rwa l C C, Procop iucC, Wo lf J L, et a.l Fast a lgor ithm s for projected c lustering[ C] / / Proceed ings o f the 1999 ACM SIG-MOD International Confe rence onM anagem en t of Data. New York: ACM Press, 1999: 61-72.
[17]  [ Aggarw a lC C, P S Yu. F ind ing genera lized pro jected clusters in h igh d im ensiona l spaces[ C] / / Proceed ing s of the 2000 ACM
[18]  SIGMOD inte rnational con ference onM anagem ent of data. Oallas, Texas: ACM Press, 2000: 70-81.
[19]  [ L iu J, Strohma ierK, W angW. Revea ling true subspace clusters in h igh dim ensions[ C] / / Pro ceedings o f the 4th IEEE Internationa
[20]  l Conference on Da taM ining. USA: IEEE Com puter So ciety, 2004: 463- 466.
[21]  [ UCIM ach ine Learn ing Ropository[ EB /OL] . http: / /a rchive. ics. uc.i edu /m l/m ach ine- lea rning-databases/breast- cancer-w iscons
[22]  [ UCIM ach ine Learn ing Ropository[ EB /OL] . http: / /a rchive. ics. uc.i edu /m l/m ach ine- lea rning-databases/ ir is /.
[23]  [ UCIM ach ine Learn ing Ropository[ EB /OL] . http: / /a rchive. ics. uc.i edu /m l/m ach ine- lea rning-databases/yeast/.
[24]  [ H e J, LanM, Tan C L, e t a.l In itia lization of c luster re finem ent a lgor ithm s: a rev iew and com pa rative study[ C] / / Proceedings
[25]  o f IEEE Internationa l Jo int Conference on Neural Netwo rks. USA: IEEE Com puter So ciety, 2004: 297-302.
[26]  [ Bohm C, Ka iling K, Kr iege lH P, e t a.l Density connected cluster ing w ith local subspace prefe rences[ C ] / / Proceed ings o f
[27]  the 4th IEEE Interna tiona l Conference on Da taM ining. USA: IEEE Com puter Soc iety, 2004: 27-34.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133