全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Group Lasso的多源电信数据离网用户分析

Keywords: 电信企业,客户流失,多源数据,特征选择,GroupLasso

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着行业竞争愈演愈烈,电信企业的客户流失情况越来越严重,给电信企业造成了巨大损失.通过电信企业的数据来做离网用户的预测,从而进一步作出挽留客户的正确决策,成为电信企业日益关注的问题.面对电信后台汇总的多源数据,经分析发现其呈现天然的组结构.为了选择对于离网类别最具判别性的特征,本文使用了一种基于GroupLasso的组特征选择方法,在此基础上用交叉验证法选择适当的特征组,最终将选择出的少量组特征用于预测离网和停机的宽带用户.实验表明,在江苏某地级市电信离网用户分析数据中取得了比其他特征选择方法的精度平均高至少10%的预测性能.

References

[1]  王雷,陈松林,顾学道.客户流失预警模型及其在电信企业的应用[J].电信科学,2006,22(9):47-51.
[2]  Wang Lei,Chen Songlin,Gu Xuedao.Analysis and application for national telecoms of customer churn alarm models[J].Telecommunication Science,2006,22(9):47-51.(in Chinese)
[3]  田玲,邱会中,郑莉华.基于神经网络的电信客户流失预测主题建模及实现[J].计算机应用,2007,27(9):2 294-2 297.
[4]  Tian Ling,Qiu Huizhong,Zheng Lihua.Telecom churn prediction modeling and application based on neural network[J].Journal of Computer Application,2007,27(9):2 294-2 297.(in Chinese)
[5]  Richter Y,Yom-Tov E,Slonim N.Predicting customer churn in mobile networks through analysis of social groups[C]//Proceedings of SIAM International Conference on Data Mining.Columbus,2010:732-741.
[6]  Idris Adnan,Asifullah Khan,YeonSoo Lee.Intelligent churn prediction in telecom:employing mRMR feature selection and RotBoost based ensemble classification[J].Applied Intelligence,2013,39(3):659-672.
[7]  Guyon,Isabelle,André Elisseeff.An introduction to variable and feature selection[J].The Journal of Machine Learning Research,2003(3):1 157-1 182.
[8]  Cong Y,Yuan J S,Liu J.Sparse reconstruction cost for abnormal event detection[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition.IEEE Conference Society,2011:3 449-3 456.
[9]  R Tibshirani.Regression shrinkage and selection via the lasso[J].Journal of the Royal Statistical Society:Series B(Methodological),1996,58(1):267-288.
[10]  Fan Jianqing,Li Runze.Variable selection via nonconcave penalized likelihood and its oracle properties[J].Journal of the American Statistical Association,2001,96(456):1 348-1 360.
[11]  Robert Tibshirani,Michael Saunders.Sparsity and smoothness via the fused lasso[J].Journal of the Royal Statistical Society:Statistical Methodology,2005,67(1):91-108.
[12]  Zou Hui.The adaptive lasso and its oracle properties[J].Journal of the American Statistical Association,2006,101(476):1 418-1 429.
[13]  Lukas Meier,Sara Van De Geer,Peter Bühlmann.The group lasso for logistic regression[J].Journal of the Royal Statistical Society:Statistical Methodology,2008,70(1):53-71.
[14]  Yuan Ming,Lin Yi.Model selection and estimation in regression with grouped variables[J].Journal of the Royal Statistical Society:Statistical Methodology,2006,68(1):49-67.
[15]  Francis R Bach.Consistency of the group lasso and multiple kernel learning[J].The Journal of Machine Learning Research,2008(9):1 179-1 225.
[16]  Jerome Friedman,Trevor Hastie,Robert Tibshirani.A note on the group lasso and a sparse group lasso[J/OL].[2014-07-20]http://arxiv.org/abs/1001.0736.
[17]  Beck,Amir,Marc Teboulle.A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J].SIAM Journal on Imaging Sciences,2009,2(1):183-202.
[18]  Liu Jun,Ji Shuiwang,Ye Jieping.SLEP:Sparse Learning with Efficient Projections[M].TEMPE:Arizona State University,2009.
[19]  Yu L,Liu H.Feature selection for high-dimensional data:a fast correlation-based filter solution[C]//Proceedings of the Twentieth International Conference on Marchine Learning(ICML 2003).Washington DC,2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133