全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

群智能算法的理论及应用综述

Keywords: 群智能,蚁群算法,粒子群算法,人工蜂群,细菌觅食优化,萤火虫算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

群智能是由自然或人造的分散自组织系统所表现出来的集体智能.群智能包含一组简单的个体,其中个体与个体、个体与环境之间存在局部交互行为.虽然个体遵循非常简单的规则,但是微观的交互最终还是导致了宏观的智能行为.在本文中,我们对典型群智能方法的起源、发展、理论、技术、应用等做了深入的研究,包括了蚁群优化、粒子群优化、人工蜂群、细菌觅食优化、萤火虫共五类算法.文末提出群智能发展的六个方向.

References

[1]  Fu Y,Ding M,Zhou C.Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV[J].IEEE Transactions on Systems,Man and Cybernetics-Part A:Systems and Humans,2012,42(2):511-526.
[2]  Rubio-Largo A,Vega-Rodriguez M A,Gomez-Pulido J A,et al.A comparative study on multiobjective swarm intelligence for the routing and wavelength assignment problem[J].IEEE Transactions on Systems,Man,and Cybernetics-Part C:Applications and Reviews,2012,42(6):1 644-1 655.
[3]  Tatsumi K,Ibuki T,Tanino T.A chaotic particle swarm optimization exploiting a virtual quartic objective function based on the personal and global best solutions[J].Applied Mathematics and Computation,2013,219(17):8 991-9 011.
[4]  Wu W C,Tsai M S.Application of enhanced integer coded particle swarm optimization for distribution system feeder reconfiguration[J].Power Systems,IEEE Transactions on,2011,26(3):1 591-1 599.
[5]  Li C,Yang S,Nguyen T T.A self-learning particle swarm optimizer for global optimization problems[J].Systems,Man,and Cybernetics,Part B:Cybernetics,IEEE Transactions on,2012,42(3):627-646.
[6]  Pehlivanoglu Y V.A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks[J].Evolutionary Computation,IEEE Transactions on,2013,17(3):436-452.
[7]  Figueiredo E M N,Ludermir T B.Effect of the PSO topologies on the performance of the PSO-ELM[C]//Proceedings of the Neural Networks(SBRN),2012 Brazilian Symposium.Curitiba,Parana,Brazil,2012:178-183.
[8]  Lane J,Engelbrecht A,Gain J.Particle swarm optimization with spatially meaningful neighbours[C]//Proceedings of the Swarm Intelligence Symposium 2008.St.Louis,Missouri:IEEE,2008.
[9]  Navalertporn T,Afzulpurkar N V.Optimization of tile manufacturing process using particle swarm optimization[J].Swarm and Evolutionary Computation,2011,1(2):97-109.
[10]  Sun J,Fang W,Wu X,et al.QoS multicast routing using a quantum-behaved particle swarm optimization algorithm[J].Engineering Applications of Artificial Intelligence,2011,24(1):123-131.
[11]  Tang X,Zhuang L,Cai J,et al.Multi-fault classification based on support vector machine trained by chaos particle swarm optimization[J].Knowledge-Based Systems,2010,23(5):486-490.
[12]  Genovesi S,Monorchio A,Mittra R,et al.A sub-boundary approach for enhanced particle swarm optimization and Its application to the design of artificial magnetic conductors[J].IEEE Transactions on Antennas and Propagation,2007,55(3):766-770.
[13]  Chan K Y,Yiu C K F,Dillon T S,et al.Enhancement of speech recognitions for control automation using an intelligent particle swarm optimization[J].IEEE Transactions on Industrial Informatics,2012,8(4):869-879.
[14]  Karaboga D,Basturk B.On the performance of artificial bee colony(ABC)algorithm[J].Applied Soft Computing,2008,8(1):687-697.
[15]  Karaboga D,Akay B.A comparative study of artificial bee colony algorithm[J].Applied Mathematics and Computation,2009,214(1):108-132.
[16]  Okaeme N A,Zanchetta P.Hybrid bacterial foraging optimization strategy for automated experimental control design in electrical drives[J].IEEE Transactions on Industrial Informatics,2013,9(2):668-678.
[17]  Ebrahimi J,Hosseinian S H,Gharehpetian G B.Unit commitment problem solution using shuffled frog leaping algorithm[J].IEEE Transactions on Power Systems,2011,26(2):573-581.
[18]  周雅兰.细菌觅食优化算法的研究与应用[J].计算机工程与应用,2010,46(20):16-21.
[19]  Zhou Yalan.Research and application on bacteria foraging optimization algorithm[J].Computer Engineering and Applications,2010,46(20):16-21.(in Chinese)
[20]  Yang X S,Sadat Hosseini S S,Gandomi A H.Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect[J].Applied Soft Computing,2012,12(3):1 180-1 186.
[21]  Horng M H.Vector quantization using the firefly algorithm for image compression[J].Expert Systems with Applications,2012,39(1):1 078-1 091.
[22]  Falcon R,Almeida M,Nayak A.Fault identification with binary adaptive fireflies in parallel and distributed systems[C]//Proceedings of the Evolutionary Computation(CEC),2011 IEEE Congress on.New Orleans,2011:1 359-1 366.
[23]  Fateen S E K,Bonilla-Petriciolet A,Rangaiah G P.Evaluation of covariance matrix adaptation evolution strategy,shuffled complex evolution and firefly algorithms for phase stability,phase equilibrium and chemical equilibrium problems[J].Chemical Engineering Research and Design,2012,90(12):2 051-2 071.
[24]  Zhang Y,Wu L,Wang S.Solving two-dimensional HP model by firefly algorithm and simplified energy function[J].Mathematical Problems in Engineering,2013(13):1-9.
[25]  Ducatelle F,Di Caro G A,Gambardella L M.An evaluation of two swarm intelligence MANET routing algorithms in an urban environment[C]//Proceedings of the Swarm Intelligence Symposium 2008.St.Louis,Missouri:IEEE,2008.
[26]  Paterlini S,Krink T.Differential evolution and particle swarm optimisation in partitional clustering[J].Computational Statistics and Data Analysis,2006,50(5):1 220-1 247.
[27]  Du X,Cheng L,Liu L.A swarm intelligence algorithm for joint sparse recovery[J].IEEE on Signal Processing Letters,2013,20(6):611-614.
[28]  Lee D S,Lee A C.Pheromone propagation controller:the linkage of swarm intelligence and advanced process control[J].IEEE Transactions on Semiconductor Manufacturing,2009,22(3):357-372.
[29]  Hinchey M G,Sterritt R,Rouff C.Swarms and swarm intelligence[J].Computer,2007,40(4):111-113.
[30]  Naeem M,Pareek U,Lee D C.Swarm intelligence for sensor selection problems[J].IEEE on Sensors Journal,2012,12(8):2 577-2 585.
[31]  Smith C U M.The‘hard problem’and the quantum physicists.Part 2:Modern times[J].Brain and Cognition,2009,71(2):54-63.
[32]  Krink T.Cooperation and selfishness in strategies for resource management[J].Spill Science and Technology Bulletin,2000,6(2):165-171.
[33]  Samanta C K,Padhy S K,Panigrahi S P,et al.Hybrid swarm intelligence methods for energy management in hybrid electric vehicles[J].Electrical Systems in Transportation,2013,3(1):22-29.
[34]  冯静,舒宁.群智能理论及应用研究[J].计算机工程与应用,2006(17):31-34.
[35]  Feng Jing,Shu Ning.Applications and theory of swarm intelligence[J].Computer Engineering and Applications,2006(17):31-34.(in Chinese)
[36]  Afshar M H.A parameter free continuous ant colony optimization algorithm for the optimal design of storm sewer networks:constrained and unconstrained approach[J].Advances in Engineering Software,2010,41(2):188-195.
[37]  Zhang Y,Wu L.Bankruptcy prediction by genetic ant colony algorithm[J].Advanced Materials Research,2011,186:459-463.
[38]  Blum C,Dorigo M.The hyper-cube framework for ant colony optimization[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B:Cybernetics,2004,34(2):1 161-1 172.
[39]  Dorigo M,Birattari M,Stutzle T.Ant colony optimization[J].IEEE on Computational Intelligence Magazine,2006,1(4):28-39.
[40]  彭喜元,彭宇,戴毓丰.群智能理论及应用[J].电子学报,2003,31(12A):1 982-1 988.
[41]  Peng Xiyuan,Peng Yu,Dai Yufeng.Swarm intelligence theory and applications[J].Acta Electronica Sinica,2003,31(12A):1 982-1 988.(in Chinese)
[42]  Gu J H,Tan Q,Li N N,et al.A new ACO with immune ability[C]//Proceedings of the Machine Learning and Cybernetics,2006 International Conference.Busan,Korea,2006:4 278-4 281.
[43]  Wong K Y,See P C.A new minimum pheromone threshold strategy(MPTS)for max-min ant system[J].Applied Soft Computing,2009,9(3):882-888.
[44]  张煜东,吴乐南,唐磊.隶属云模型蚁群算法的新应用:生鲜食品多阶段动态定价[J].统计与决策,2009(22):26-29.
[45]  Zhang Yudong,Wu Lenan,Tang Lei.Colud model based ant colony algorithm for multi-period dynamic pricing of fresh food[J].Statistics and Decision,2009(22):26-29.(in Chinese)
[46]  Gupta D K,Arora Y,Singh U K,et al.Recursive ant colony optimization for estimation of parameters of a function[C]//Proceedings of the Recent Advances in Information Technology(RAIT),2012 1st International Conference.Dhanbad,India,2012:448-454.
[47]  Fonseca L G,Capriles P V S C,Barbosa H J C,et al.A stochastic rank-based ant system for discrete structural optimization[C]//Proceedings of the Swarm Intelligence Symposium 2007.Berlin:IEEE,2007:68-75.
[48]  Hu X M,Zhang J,Chung H S H,et al.SamACO:variable sampling ant colony optimization algorithm for continuous optimization[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B:Cybernetics,2010,40(6):1 555-1 566.
[49]  Hemmatian H,Fereidoon A,Sadollah A,et al.Optimization of laminate stacking sequence for minimizing weight and cost using elitist ant system optimization[J].Advances in Engineering Software,2013,57:8-18.
[50]  Tang J,Ma Y,Guan J,et al.A max-min ant system for the split delivery weighted vehicle routing problem[J].Expert Systems with Applications,2013,40(18):7 468-7 477.
[51]  张煜东,吴乐南,韦耿.基于正负反馈机制的蚁群算法用于软硬件划分[J].电子测量与仪器学报,2009,23(8):32-38.
[52]  Zhang Yudong,Wu Lenan,Wei Geng.Application of improved ant colony algorithm based on forward/backword feedback in hardware/software partition[J].Journal of Electronic Measurement and Instrument,2009,23(8):32-38.(in Chinese)
[53]  文仁强,钟少波,袁宏永,等.应急资源多目标优化调度模型与多蚁群优化算法研究[J].计算机研究与发展,2013,50(7):1 464-1 472.
[54]  Wen Renqiang,Zhong Shaobo,Yuan Hongyong,et al.Emergency resource multi-objective optimization scheduling model and multi-colony ant optimization algorithm[J].Journal of Computer Research and Development,2013,50(7):1 464-1 472.(in Chinese)
[55]  Hsu C H,Juang C F.Evolutionary robot wall-following control using type-2 fuzzy controller with species-DE-activated continuous ACO[J].IEEE Transactions on Fuzzy Systems,2013,21(1):100-112.
[56]  Kennedy J,Eberhart R.Particle swarm optimization[C]//Proceedings of the Neural Networks,1995 Proceedings,IEEE International Conference.Perth,WA,USA,1995:1942-1948.
[57]  Zhang Y,Wu L,Wang S.UCAV path planning by fitness-scaling adaptive chaotic particle swarm optimization[J].Mathematical Problems in Engineering,2013,2013:1-9.
[58]  Shi Y,Eberhart R.A modified particle swarm optimizer[C]//Evolutionary Computation Proceedings,1998 IEEE World Congress on Computational Intelligence,The 1998 IEEE International Conference.Anchorage,AK,USA,1998:69-73.
[59]  Coelho L D S.Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems[J].Expert Systems with Applications,2010,37(2):1 676-1 683.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133