全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于共空间模式的运动想象脑电信号识别研究

Keywords: 运动想象,脑-机接口,特征提取,模式识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

脑-机接口技术领域的关键问题是脑电信号的分类识别研究.本文针对脑电信号的分类问题,基于EGI-64导脑电采集系统得到7名被试者的左右手运动想象脑电数据,首先采用扩展Infomax?ICA方法对脑电数据进行去噪处理;然后利用共空间模式方法对C3/C42个电极的脑电信号进行特征提取;最后比较了Fisher线性判别分析法、贝叶斯方法、径向神经网络和BP神经网络几种算法的平均分类率.结果表明神经网络分类方法得到的平均分类率要高于其他2种方法,而BP神经网络方法的平均分类率最高,可以达到95.36%,但另外3种方法的运行速度明显高于BP神经网络.该结果为实时BCI系统实施提供了一定依据.

References

[1]  Yongwoong J,Chang S N,Yong?Joo K,et al.Event?related(De)synchronization(ERD/ERS)during motor imagery tasks:implications for brain?computer Interfaces[J].International Journal of Industrial Ergonomics,2011,41(5):428-436.
[2]  Zou L,Wang X G,Shi G D,et al.EEG feature extraction and pattern classification based on motor imagery in brain?computer interface[J].International Journal of Software Science and Computational Intelligence,2011,3(3):43-46.
[3]  Dennis J M,Jonathan R W.Sensorimotor rhythm based brain?computer interface(BCI):model order selection for autoregressive spectral analysis[J].Journal of Neural Engineering,2008,5(2):155-162.
[4]  赵丽,郭旭宏.基于运动想象的脑电信号功率谱估计[J].电子测量技术,2012,35(6):81-87.
[5]  Zhao Li,Guo Xuhong.EEG power spectrum estimation based on motor imagery[J].Electronic Measurement Technology,2012,35(6):81-87.(in Chinese)
[6]  Chia?Feng L,Shin T,Chih I H,et al.Reorganization of functional connectivity during the motor task using EEG time frequency cross mutual information analysis[J].Clinical Neurophysiology,2011,122(8):1 569-1 579.
[7]  李庆华,山拜?达拉拜,孙全富.基于自适应小波阈值的心电信号去噪算法[J].计算机仿真,2013,30(10):368-432.
[8]  Li Qinghua,Senbai Dalabaev,Sun Quanfu.Brige?massart policy of application of ECG based on wavelet threshold denoising[J].Computer Simulation,2013,30(10):368-432.(in Chinese)
[9]  Ling Z,Ying C Z,Laurence T T,et al.Single trial evoked potentials study by combining wavelet denoising and principal component analysis method[J].Journal of Clinical Neurophysiology,2010,27(1):17-24.
[10]  Bian W,Fang Y,Jicai Z,et al.A frequency temporal spatial method for motor related electroencephalography pattern recognition by comprehensive feature optimization[J].Computers in Biology and Medicine,2012,42(4):353-363.
[11]  Fraiwan L,Lweesy K,Khasawneh N.Classification of sleep stages using multi wavelet time frequency entropy and LDA[J].Methods of Information in Medicine,2010,49(3):230-237.
[12]  胡明霞.表面肌电信号识别特征提取的仿真研究[J].计算机仿真,2013,30(5):340-350.
[13]  Hu Mingxia.Research on feature extraction and classification of electromyographic signals recognition[J].Computer Simulation,2013,30(5):340-350.(in Chinese)
[14]  Wei Y H.Fuzzy hopfield neural network clustering for single?trial motor imagery EEG classification[J].Expert Systems with Application,2012,39(1):1 055-1 061.
[15]  吴婷,颜国正,杨帮华,等.基于有监督学习的概率神经网络的脑电信号分类方法[J].上海交通大学学报:自然科学版,2008,42(5):803-806.
[16]  Wu Ting,Yan Guozheng,Yang Banghua,et al. Electroencephalography classification based on probabilistic neural network with supervised learning in brain computer interface[J].Journal of Shanghai Jiaotong University:Natural Science Edition,2008,42(5):803-806.(in Chinese)
[17]  Zou L,Duan S L,Ma Z H,et al.Single?trial event related potentials extraction by using independent component analysis[C]//2th International Conference on Biomedical Engineering and Informatics.Tianjin,2009:1-5.
[18]  Zou L,Xu S K,Ma Z H,et al.Automatic removal of artifacts from attention deficit hyperactivity disorder electroencephalograms based on independent component analysis[J].Cognitive Computation,2013,5(2):225-233.
[19]  Muhammad T A,Wataru M,Christopher J J.Employing spatially constrained ICA and wavelet denoising,for automatic removal of artifacts from multi?channel EEG data[J].Signal Processing,2012,92(2):401-416.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133