全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于LS-SVM的多标签分类算法

, PP. 68-73

Keywords: LS-SVM,多标签分类,一对一分解

Full-Text   Cite this paper   Add to My Lib

Abstract:

多标签分类是指部分样本同时归属多个类别.基于数据分解的算法因训练速度快、性能良好而得到广泛的应用.本文采用一对一分解策略,将k标签数据集分解为k(k-1)/2个两类单标签和两类双标签的数据子集.对每一训练子集统一用LS-SVM模型建立子分类器,当出现双标签样本时将其函数值设为0,并确定适当的分类阈值.对情感、景象和酵母数据集的实验结果表明,本文算法的某些性能指标优于现有一些常用的多标签分类方法.

References

[1]  [ Bou tellM R, Luo J, Shen X, e t a.l Learn ingmu lt-i labe l scene class ification[ J]. Pattern Recognition, 2003, 37( 9): 1 757- 1 771.
[2]  [ Tsoum akas G, Katakis I. M ult-i labe l c lassification: an ov erv iew [ J]. Inte rna tiona l Journal of DataW arehousing andM in ing, 2007, 3( 3): 1-13.
[3]  [ Tsoum akas G, Katakis I, V lahavas I. M in ing M ult-i label Data DataM in ing and Know ledge DiscoveryH andbook[M ]. New York: Springer, 2010.
[4]  [ 李佳阳. 基于双标签支持向量机的快速多标签分类算法[ D]. 南京: 南京师范大学计算机科学与技术学院, 2010. L i Jiayang. A fast mu lt-i labe l classification algor ithm based on doub le labe l support v ectorm ach ine[ D]. Nanjing: Schoo l o f Compu ter Sc ience and Techno logy, Nanjing No rm al Univers ity, 2010. ( in Ch inese)
[5]  [ E lisseeffA, W eston J. A kerne lm ethod formu lt-i labe lled c lassification[ C] / / Proceed ings o fAdvances in Neural Info rma tion. New York: BIOw ulf Techno log ies, 2003: 681-687.
[6]  [ SchapireR E, Singer Y. Boo stexte r: a boosting based sy stem for text categor ization[ J]. M achine Learn ing, 2000, 39( 2/3): 135-168.
[7]  [ ZhangM L, Zhou Z H. A k-nea rest ne ighbor based algor ithm for mu lt-i labe l classification [ C] / / Proceed ings of the IEEE In ternational Conference on G ranu la r Com puting. H e ide lberg: Spr inger Ber lin, 2004: 718-721.
[8]  [ Zhu S H, J i X, XuW, e t a .l M ult-i labelled c lassification using m ax imum entropy m ethod [ C ] / / Pro ceedings o f the 28 th Annual Internationa lACM S IGIR Conference on Resea rch and Deve lopm en t. Salvador: ACM, 2004: 274-281.
[9]  [ T rohidis K, Tsoum akas G, Kallir is G, e t a.l M ultilabe l c lassification o f music into em otions[ C ] / / Proceedings Inte rnational Conference onM usic Inform a tion Re trieva.l Ph ilade lph ia: ISM IR, 2008: 325-330.
[10]  [ T soumakas G, Ka tak is I. M u lt-i labe l classification: an overv iew [ J]. Inte rnational Journa l of DataW arehousing andM in ing, 2007, 3( 3): 1-13.
[11]  [ Li T, Zhang C L, Zhu SH. Em p ir ica l stud ies on mu lt-i labe l c lassifica tion[ C] / / Proceed ing s o f IEEE Internationa lConference on Too ls w ith A rtific ia l In telligence. W ash ing ton DC: IEEE Com puter Soc iety, 2006: 86-92.
[12]  [ W an S P, Xu J H. A m ult-i label classification a lgo rithm based on tr ip le class support v ector m ach ine [ C] / / Proceed ing s o f IEEE International Confe rence onW ave let Ana ly sis and Patte rn Recognition. Be ijing: IEEE ICWAPR, 2007: 1 447-1 452.
[13]  [ Suykens J K. Least squares suppo rt vector m ach ines fo r c lassifica tion and nonlinear m ode ling [ J]. Neura l Ne tw ork W orld, 2000, 10: 29-48.
[14]  [ Pav lid is P, W eston J, Ca i J, et a.l C om bin ingm icroarray expression data and phy logene tic profiles to learn functional categor ies using support vector m ach ines[ C ] / / Proceed ing s o f Annua l Interna tiona l Conference on Com putationa lMo lecu la r B io logy. Co lumb ia: Co lum iaUn iversity, 2001: 242-248.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133