全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于SVM的多类代价敏感学习及其应用

, PP. 79-82

Keywords: 代价敏感学习,支持向量机,入侵检测,漏报率,误报率

Full-Text   Cite this paper   Add to My Lib

Abstract:

标准的分类器设计一般基于最小化错误率.在入侵检测等问题中,不同类型的错分往往具有不等的代价.通过在支持向量机的类概率输出中引入代价敏感机制,提出了3种基于最小化总体错分代价设计分类器的方法.实验结果表明通过改变代价矩阵,能在漏报率、误报率及稀有类样本的错误率之间调节,从而保证在误报率尽可能小的情况下降低漏报率和稀有类样本的错误率,以减少总体错分代价.

References

[1]  [ 2 ] CHANG Chihchung, L IN Chihjen. L IBSVM: A library for support vectormachines [ EB /OL ]. http: / /www. csie. ntu. edu. tw/ ~cjlin / libsvm, 2005.
[2]  [ 3 ] DOM INGOS P. MetaCost: a generalmethod formaking classifiers cost2sensitive[C ] / / Proc of the 5 th International Conference on Konwledge Discovery and DataMining. San Diego: ACM Press, 1999. 155-164.
[3]  [ 4 ] OSUNA E, FREUND R, GIROSI F. Support vectormachines: Training and applications[R ]. A IMemo 1602,MITA ILab, 1997.
[4]  [ 5 ] WU Tingfan, L IN Chihjen, RUBY CWeng. Probability estimates formulti2class classification by pairwise coup ling[ J ]. Journal ofMaching Learning Research, 2004 (5) : 975-1 005.
[5]  [ 6 ] KDD Cup 1999 Data [DB /OL ]. [ 1999 - 10 - 28 ] http: / /kdd. ics. uci. edu /databases/kddcup99 /kddcup99. html.
[6]  [ 7 ] SCOTT C, NOWAK R. A neyman2pearson app roach to statistical learning [ J ]. IEEE Transactions on Information Theory, 2005 (51) : 3 806-3 819.
[7]  [ 1 ] MARK A DAVENPORT. The 2nu - SVM: A Cost2Sensitive Extension of the nu - SVM [ R ]. Rice University ECE Technical Report TREE 0504, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133