[ TAMOGICH IT, TANAKA K, YAMAFU JI K, et a.l Fuzzy descripto r system s: stab ility ana lys is and design v ia LM Is[ C ] / / Proceedings o f Am er ican Contro l Conference. San D iego: Am er ican Automa tic Contro l Counci,l 1999: 1827-1831.
[2]
[ TAN IGUCH IT, TANAKA K, YAMAFUJIK, et a .l Fuzzy descr iptor system s and nonlinearmodel fo llow ing contro l[ J] . IEEE T ransactions on Fuzzy System s, 2000, 8( 4): 442-452.
[3]
[ KEEL L H, BHATTACHARYYA S P, ROBUST. Frag ile, or Optim a l[ J]. IEEE Trans on Automa tic Control, 1997, 42( 8): 1098-1105.
[4]
[ HYUN, SANG C KIM K TAE, PARK H BAE. Robust and non- frag ileH] contro ller design for affine param eter uncerta in system s[ C] / / Pro ceedings of the 39th IEEE Conference on Dec ision and Contro .l Sydney, NSW: Austra lia IEEE, 2000: 3224-3229.
[5]
[ JADBABAIE A, CHAOUKI T A, ABDALAH, e t a .l Robust, non-frag ile and optim a l contro ller design v ia linear m atr ix inequa lities[ C] / / Proceed ing s of the Am erican Contro l Con fe rence. Ph ilade lphia, Pennsy lvania: Am erican Autom atic Contro l Counci,l 1998: 2842-2846.
[6]
[ DOMEN ICO F, CHAOUKIT A. Robust non- frag ile LQ contro llers: the static sta te feedback case[ C] / / Proceed ings of the Am erican Contro l Conference. Philadelphia, Pennsy lvan ia: Am er ican Autom a tic Contro l Counci,l 1998: 1109-1113.
SHU W e iren, ZHANG Q ing ling. Robust and non-frag ileH ] contro l for uncerta in singu lar sy stem sw ith tim e-delay in state[ J]. Con tro l and Decision, 2005, 20( 6): 629-633. ( in Chinese)
ZHU Baoyan, ZHANG Q ing ling. Optim a l guranteed cost contro l fo r T- S fuzzy descriptor sy stem s w ith uncertain pa rame ters [ J] . Sy stem s Eng inee ring-Theory and Practice, 2004, 25( 12) : 49-57. ( in Ch inese)
[11]
[ KHARGONEKAR P, PETERSEN IR, ZHOU K. Robust stab ilization of uncerta in system s andH ] optim al contro l[ J]. IEEE T rans on Automa tic Contro,l 1990, 35( 3) : 351-361.