全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
华西医学  2010 

胶质瘤术后假性进展的临床特点及治疗

, PP. 1924-1926

Keywords: 假性进展,恶性胶质瘤,替莫?胺,胶质瘤复发

Full-Text   Cite this paper   Add to My Lib

Abstract:

【】随着对术后胶质瘤复发的不断研究,逐渐发现胶质瘤术后补充放疗和/或化疗等综合治疗的患者行MRI检查后出现类似肿瘤复发的强化影像,经病检证实为一种治疗相关反应,称之为“假性进展(pseu-doprogression,psPD)”。胶质瘤术后患者psPD与肿瘤复发有不同的病理生理机制及治疗方案,随着对psPD及胶质瘤复发认识的日臻完善,使得临床医生在判断复发胶质瘤及制定其治疗策略的过程中更为准确、有效。

References

[1]   Stupp RR, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J]. N Engl J Med, 2005, 352 (10): 987-996.
[2]   Fiegler W, Langer M, Scheer M, et al. Reversible computed tomographic changes following brain tumor irradiation induced by the "early-delayed reaction" after radiation[J]. Radiologe, 1986, 26(4): 206-209.
[3]   Watne K, Hager B, Heier M, et al. Reversible oedema and necrosis after irradiation of the brain. Diagnostic procedures and clinical manifestations[J]. Acta Oncol, 1990, 29(7): 891-895.
[4]   Griebel M, Friedman HS, Halperin EC, et al. Reversible neurotoxicity following hyperfractionated radiation therapy of brain stem glioma[J]. Med Pediatr Oncol, 1991, 19(3): 182-186.
[5]   Chamberlain M, Glantz M, Chalmers L, et al. Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma[J]. J Neurooncol 2007, 82(1): 81-83.
[6]   Taal W, Brandsma D, de Bruin HG, et al. Incidence of early pseudoprogression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide[J]. Cancer, 2008, 113(2): 405-410.
[7]   Prados MD, Chang SM, Butowski N, et al. Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma[J]. J Clin Oncol, 2009, 27(4): 579-584.
[8]   Rodemann HP, Blaese MA. Responses of normal cells to ionizing radiation[J]. Semin Radiat Oncol, 2007, 17(2): 81-88.
[9]   Nordal RA, Nagy A, Pintilie M, et al. Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor[J]. Clin Cancer Res, 2004, 10: 3342-3353.
[10]   Gupta VK, Jaskowiak NT, Beckett MA, et al. Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance[J]. Cancer J, 2002, 8 (1): 47-54.
[11]   Brandes AA, Rigon A, Zampieri P, et al. Carboplatin and teniposide concurrent with radiotherapy in patients with glioblastoma multiforme: a phase II study.[J]. Cancer 1998, 82(2): 355-361.
[12]   Mullins ME, Barest GD, Schaefer PW, et al. Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis[J]. AJNR Am J Neuroradiol, 2005, 26: 1967-1972.
[13]   Kumar AJ, Leeds NE, Fuller GN, et al. Malignant gliomas: MR imaging spectrum of radiation therapy-and chemotherapy-induced necrosis of the brain after treatment[J]. Radiology, 2000, 217: 377-384.
[14]   Sugahara T, Korogi Y, Tomiguchi S, et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue[J]. AJNR Am J Neuroradiol, 2000, 21(5): 901-909.
[15]   Teksam M, Kayahan EM, Yerli H, et al. Brain MR perfusion and MR spectroscopy in differentiation of radiation necrosis from tumor recurrence (case report)[J]. Tani Girisim Radyol, 2004, 10(4): 263-267.
[16]   Shimizu H, Kumabe T, Tominaga T, et al. Noninvasive evaluation of malignancy of brain tumors with proton MR spectroscopy[J]. AJNR Am J Neuroradiol, 1996, 17(4): 737-747.
[17]   Macdonald DR, Cascino TL, Schold SC Jr, et al. Response criteria for phase II studies of supratentorial malignant glioma[J]. J Clin Oncol, 1990, 8(7): 1277-1280.
[18]   Kleinschmidt-DeMasters BK, Geier JM. Pathology of high-dose intraarterial BCNU[J]. Surg Neurol, 1989, 31(6): 435-443.
[19]   Brandes AA, Franceschi E, Tosoni A, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients[J]. J Clin Oncol, 2008, 26(13): 2192-2197.
[20]   Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma[J]. N Engl J Med, 2005, 352(10): 997-1003.
[21]   Vigneron D, Bollen A, McDermott M, et al. Three dimensional magnetic resonance spectroscopic imaging of histologically confirmed brain tumors[J]. Magn Reson Imaging, 2001, 19(1): 89-101.
[22]   Rock JP, Scarpace L, Hearshen D, et al. Associations among magnetic resonance spectroscopy, apparent diffusion coefficients, and image-guided histopathology with special attention to radiation necrosis[J]. Neurosurgery, 2004, 54(5): 1111-1117.
[23]   Chen W. Clinical applications of PET in brain tumors[J]. J Nucl Med, 2007, 48 (9): 1468-1481.
[24]   Ricci P, Karis J, Heiserman J, et al. Differentiating recurrent tumor from radiation necrosis: time for reevaluation of positron emission tomography[J] AJNR Am J Neuroradiol, 1998, 19(3): 407-413.
[25]   Terakawa Y, Tsuyuguchi N, Iwai Y, et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy[J]. J Nucl Med, 2008, 49(5): 694-699.
[26]   Vredenburgh JJ, Desjardins A, Herndon JE II, et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma[J]. Clin Cancer Res, 2007, 13: 1253-1259.
[27]   Cloughesy TF, Prados MD, Wen PY, et al. A phase II, randomized, non-comparative clinical trial of the effect of bevacizumab (BV) alone or in combination with irinotecan (CPT) on 6-month progression free survival (PFS6) in recurrent, treatment-refractory glioblastoma (GBM)[J]. J Clin Oncol, 2008, 26 (Suppl).
[28]   Gonzalez J, Kumar AJ, Conrad CA, et al. Effect of bevacizumab on radiation necrosis of the brain[J]. Int J Radiat Oncol Biol Phys, 2007, 67(2): 323-326.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133