全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
华西医学  2014 

事件相关电位作为精神分裂症早期预测指标的研究进展

DOI: 10.7507/1002-0179.20140540, PP. 1770-1774

Keywords: 精神分裂症,事件相关电位,超高危,诊断

Full-Text   Cite this paper   Add to My Lib

Abstract:

精神分裂症的诊断目前依赖于临床表现,但临床表现往往缺乏特异性,且出现典型的临床表现需要经历较长时间。精神分裂症患者在出现典型精神病性症状之前,存在一个超高危的时期(UHR),对该时期患者的早期识别和干预可以获得相对较好的临床结局。事件相关电位(ERP)是客观评价大脑认知功能的重要方法,可早期发现精神分裂症患者的认知功能变化,根据ERP的一些特征性改变,可对处于UHR的患者是否会演变为精神分裂症进行早期预测。现结合近年研究,对ERP指标在精神分裂症UHR时期的变化及对精神分裂症的早期预测的价值进行综述。

References

[1]   Myles-Worsley M, Ord L, Blailes F, et al. P50 sensory gating in adolescents from a Pacific island isolate with elevated risk for schizophrenia[J]. Biol Psychiatry, 2004, 55(7): 663-667.
[2]   Duncan CC, Barry RJ, Connolly JF, et al. Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400[J]. Clin Neurophysiol, 2009, 120(11): 1883-1908.
[3]   Lee SY, Namkoong K, Cho HH, et al. Reduced visual P300 amplitudes in individuals at ultra-high risk for psychosis and first-episode schizophrenia[J]. Neurosci Lett, 2010, 486(3): 156-160.
[4]   Higuchi Y, Sumiyoshi T, Seo T, et al. Mismatch negativity and cognitive performance for the prediction of psychosis in subjects with At-Risk mental state[J]. PLoS One, 2013, 8(1): 1-10.
[5]   Lin YT, Liu CM, Chiu MJ, et al. Differentiation of schizophrenia patients from healthy subjects by mismatch negativity and neuropsychological tests[J]. PLoS One, 2012, 7(4): 1-9.
[6]   Ziermans TB, Schothorst PF, Sprong MA, et al. Reduced prepulse inhibition as an early vulnerability marker of the psychosis prodrome in adolescence[J]. Schizophr Res, 2012, 134(1): 10-15.
[7]   Polich J. P300 clinical utility and control of variability[J]. J Clin Neurophysiol, 1998, 15(1): 14-33.
[8]   van der Stelt O, Frye J, Lieberman JA, et al. Impaired P3 generation reflects high-level and progressive neurocognitive dysfunction in schizophrenia[J]. Arch Gen Psychiatry, 2004, 61(3): 237-248.
[9]   Yeap S, Kelly SP, Sehatpour P, et al. Visual sensory processing deficits in schizophrenia and their relationship to disease state[J]. Eur Arch Psychiatry Clin Neurosci, 2008, 258(5): 305-316.
[10]   Yeap S, Kelly SP, Sehatpour P, et al. Early visual sensory deficits as endophenotypes for schizophrenia: high-density electrical mapping in clinically unaffected first-degree relatives[J]. Arch Gen Psychiatry, 2006, 63(11): 1180-1188.
[11]   Koychev I, El-Deredy W, Haenschel C, et al. Visual information processing deficits as biomarkers of vulnerability to schizophrenia: an event-related potential study in schizotypy[J]. Neuropsychologia, 2010, 48(7): 2205-2214.
[12]   Schwartzman D, Maravic K, Kranczioch C, et al. Altered early visual processing components in hallucination-prone individuals[J]. Neuroreport, 2008, 19(9): 933-937.
[13]   Yeap S, Kelly SP, Thakore JH, et al. Visual sensory processing deficits in first-episode patients with schizophrenia[J]. Schizophr Res, 2008, 102(1/2/3): 340-343.
[14]   Koychev I, El-Deredy W, Deakin JF. New visual information processing abnormality biomarker for the diagnosis of schizophrenia[J]. Expert Opin Med Diagn, 2011, 5(4): 357-368.
[15]   Bramon E, Shaikh M, Broome M, et al. Abnormal P300 in people with high risk of developing psychosis[J]. Neuroimage, 2008, 41(2): 553-560.
[16]   Raux G, Bonnet-Brilhault F, Louchart S, et al. The-2 bp deletion in exon 6 of the “alpha 7-like” nicotinic receptor subunit gene is a risk factor for the P50 sensory gating deficit[J]. Mol Psychiatry, 2002, 7(9): 1006-1011.
[17]   Freedman R, Olincy A, Ross RG, et al. The genetics of sensory gating deficits in schizophrenia[J]. Curr Psychiatry Rep, 2003, 5(2): 155-161.
[18]   Bramon E, Rabe-Hesketh S, Sham P, et al. Meta-analysis of the P300 and P50 waveforms in schizophrenia[J]. Schizophr Res, 2004, 70(2/3): 315-329.
[19]   Freedman R, Ross R, Leonard S, et al. Early biomarkers of psychosis[J]. Dialogues Clin Neurosci, 2005, 7(1): 17-29.
[20]   Clementz BA. Psychophysiological measures of (dis)inhibition as liability indicators for schizophrenia[J]. Psychophysiology, 1998, 35(6): 648-668.
[21]   Brockhaus-Dumke A, Schultze-Lutter F, Mueller R, et al. Sensory gating in schizophrenia: P50 and N100 gating in antipsychotic-free subjects at risk, first-episode, and chronic patients[J]. Biol Psychiatry, 2008, 64(5): 376-384.
[22]  [ 1 ] Yung AR, Nelson B, Stanford C, et al. Validation of “prodromal” criteria to detect individuals at ultra high risk of psychosis: 2 year follow-up[J]. Schizophr Res, 2008, 105(1/2/3): 10-17.
[23]  [ 2 ] Tretter F, Gebicke-Haerter PJ. Systems biology in psychiatric research: from complex data sets over wiring diagrams to computer simulations[J]. Methods Mol Biol, 2012, 829: 567-592.
[24]  [ 3 ] Nieman D, Becker H, Van DR, et al. Antisaccade task performance in patients at ultra high risk for developing psychosis[J]. Schizophr Res, 2007, 95(1/3): 54-60.
[25]  [ 4 ] Olin SC, Mednick SA. Risk factors of psychosis: identifying vulnerable populations premorbidly[J]. Schizophr Bull, 1996, 22(2): 223-240.
[26]  [ 5 ] Mossaheb N, Wiesegger G, Amminger GP, et al. Early recognition and intervention for schizophrenia[J]. Nervenarzt, 2006, 77(1): 32-34.
[27]  [ 6 ] Sprong M, Becker HE, Schothorst PF, et al. Pathways to psychosis: a comparison of the pervasive developmental disorder subtype Multiple Complex Developmental Disorder and the “At Risk Mental State”[J]. Schizophr Res, 2008, 99(1/2/3): 38-47.
[28]  [ 7 ] Haroun N, Dunn L, Haroun A, et al. Risk and protection in prodromal schizophrenia: ethical implications for clinical practice and future research[J]. Schizophr Bull, 2006, 32(1): 166-178.
[29]  [ 8 ] Simon AE, Cattapan-Ludewig K, Zmilacher S, et al. Cognitive functioning in the schizophrenia prodrome[J]. Schizophr Bull, 2007, 33(3): 761-771.
[30]  [ 9 ] Van Tricht MJ, Nieman DH, Koelman JH, et al. Reduced parietal P300 amplitude is associated with an increased risk for a first psychotic episode[J]. Biol Psychiatry, 2010, 68(7): 642-648.
[31]   Van Der Stelt O, Belger A. Application of electroencephalography to the study of cognitive and brain functions in schizophrenia[J]. Schizophr Bull, 2007, 33(4): 955-970.
[32]   Schwarz E, Bahn S. Biomarker discovery in psychiatric disorders[J]. Electrophoresis, 2008, 29(13): 2884-2890.
[33]   Fusar-Poli P, Crossley N, Woolley J, et al. White matter alterations related to P300 abnormalities in individuals at high risk for psychosis: an MRI-EEG study[J]. J Psychiatry Neurosci, 2011, 36(4): 239-248.
[34]   Shutara Y, Koga Y, Fujita K, et al. An event-related potential study on the impairment of automatic processing of auditory input in schizophrenia[J]. Brain Topogr, 1996, 8(3): 285-289.
[35]   Van Tricht MJ, Nieman DH, Koelman JH, et al. Auditory ERP components before and after transition to a first psychotic episode[J]. Biol Psychol, 2011, 87(3): 350-357.
[36]   usar-Poli P, Crossley N, Woolley J, et al. Gray matter alterations related to P300 abnormalities in subjects at high risk for psychosis: longitudinal MRI-EEG study[J]. Neuroimage, 2011, 55(1): 320-328.
[37]   Kujala T, Tervaniemi M, Schr?ger E. The mismatch negativity in cognitive and clinical neuroscience: theoretical and methodological considerations[J]. Biol Psychol, 2007, 74(1): 1-19.
[38]   N??t?nen R. The mismatch negativity: a powerful tool for cognitive neuroscience[J]. Ear Hear, 1995, 16(1): 6-18.
[39]   李?, 邓伟, 李寅飞, 等. 缺陷型及非缺陷型精神分裂症首次发病未服药患者失匹配负波的对照研究[J]. 临床精神医学杂志, 2013, 23(4): 217-220.
[40]   Turetsky BI, Calkins ME, Light GA, et al. Neurophysiological endophenotypes of schizophrenia: the viability of selected candidate measures[J]. Schizophr Bull, 2007, 33(1): 69-94.
[41]   Umbricht D, Krljes S. Mismatch negativity in schizophrenia: a meta-analysis[J]. Schizophr Res, 2005, 76(1): 1-23.
[42]   Hermens DF, Ward PB, Hodge MA, et al. Impaired MMN/P3a complex in first-episode psychosis: cognitive and psychosocial associations[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2010, 34(6): 822-829.
[43]   Brockhaus-Dumke A, Tendolkar I, Pukrop R, et al. Impaired mismatch negativity generation in prodromal subjects and patients with schizophrenia[J]. Schizophr Res, 2005, 73(2/3): 297-310.
[44]   Jahshan C, Cadenhead KS, Rissling AJ, et al. Automatic sensory information processing abnormalities across the illness course of schizophrenia[J]. Psychol Med, 2012, 42(1): 85-97.
[45]   Atkinson RJ, Michie PT, Schall U. Duration mismatch negativity and P3a in first-episode psychosis and individuals at ultra-high risk of psychosis[J]. Biol Psychiatry, 2012, 71(2): 98-104.
[46]   Hsieh MH, Shan JC, Huang WL, et al. Auditory event-related potential of subjects with suspected pre-psychotic state and first-episode psychosis[J]. Schizophr Res, 2012, 140(1/2/3): 243-249.
[47]   Bodatsch M, Ruhrmann S, Wagner M, et al. Prediction of psychosis by mismatch negativity[J]. Schizophr Res, 2010, 117(2/3, SI): 244.
[48]   Shaikh M, Valmaggia L, Broome MR, et al. Reduced mismatch negativity predates the onset of psychosis[J]. Schizophr Res, 2012, 134(1): 42-48.
[49]   Adler LE, Pachtman E, Franks RD, et al. Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia[J]. Biol Psychiatry, 1982, 17(6): 639-654.
[50]   Li Z, Zheng B, Deng W, et al. Multi-components of evoked-brain potentials in deficit and nondeficit schizophrenia[J]. Asia Pac Psychiatry, 2013, 5(2): 69-79.
[51]   李?, 邓伟, 林鄞, 等. 缺陷型及非缺陷型首发精神分裂症患者听觉感觉门控P50的对照研究[J]. 中国神经精神疾病杂志, 2013, 39(4): 218-223.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133