全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
华西医学  2015 

肿瘤干细胞与肿瘤微环境相互作用的研究进展

DOI: 10.7507/1002-0179.20150511, PP. 1784-1788

Keywords: 肿瘤干细胞,微环境,血管形成,细胞外基质,低氧

Full-Text   Cite this paper   Add to My Lib

Abstract:

肿瘤干细胞作为肿瘤发生、发展、复发、耐药的根源,在近些年受到广泛关注。随着研究的不断深入,人们慢慢发现,肿瘤干细胞与肿瘤微环境在肿瘤发展过程中进行着复杂的对话,肿瘤干细胞不仅可以适应肿瘤微环境的变化,还可以改变、影响肿瘤微环境;而肿瘤微环境不仅可以影响干细胞的自我更新能力,还可以诱导正常小细胞和非肿瘤干细胞向肿瘤干细胞转变。

References

[1]  1 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.
[2]  2 Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J]. Nat Med, 1997, 3(7): 730-737.
[3]  3 Wang R, Chadalavada K, Wilshire J, et al. Glioblastoma stem-like cells give rise to tumour endothelium[J]. Nature, 2010, 468(7325): 829-833.
[4]  4 Chaffer CL, Brueckmann I, Scheel C, et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state[J]. Proc Natl Acad Sci USA, 2011, 108(19): 7950-7955.
[5]  5 Korkaya H, Liu S, Wicha MS. Breast cancer stem cells, cytokine networks, and the tumor microenvironment[J]. J Clin Invest, 2011, 121(10): 3804-3809.
[6]  6 Polyak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment[J]. Trends Genet, 2009, 25(1): 30-38.
[7]  7 Coussens LM, Werb Z. Inflammation and cancer[J]. Nature, 2002, 420(6917): 860-867.
[8]  8 Grivennikov SI, Greten FR, Immunity KM. Inflammation, and cancer[J]. Cell, 2010, 140(6): 883-899.
[9]  9 Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing[J]. N Engl J Med, 1986, 315(26): 1650-1659.
[10]  10 Yang X, Hou J, Han Z, et al. One cell, multiple roles: contribution of mesenchymal stem cells to tumor development in tumor microenvironment[J]. Cell Biosci, 2013, 3(1): 5.
[11]  11 Bianchi G, Borgonovo G, Pistoia V, et al. Immunosuppressive cells and tumour microenvironment: focus on mesenchymal stem cells and myeloid derived suppressor cells[J]. Histol Histopathol, 2011, 26(7): 941-951.
[12]  12 Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411): 143-147.
[13]  13 Shinojima N, Hossain A, Takezaki T, et al. TGF-β mediates homing of bone marrow-derived human mesenchymal stem cells to glioma stem cells[J]. Cancer Res, 2013, 73(7): 2333-2344.
[14]  14 Liu S, Ginestier C, Ou SJ, et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks[J]. Cancer Res, 2011, 71(2): 614-624.
[15]  15 Li HJ, Reinhardt F, Herschman HR, et al. Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling[J]. Cancer Discov, 2012, 2(9): 840-855.
[16]  16 Mclean K, Gong Y, Choi Y, et al. Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production[J]. J Clin Invest, 2011, 121(8): 3206-3219.
[17]  17 Gabbiani G, Majno G. Dupuytren’s contracture: fibroblast contraction An ultrastructural study[J]. Am J Pathol, 1972, 66(1): 131-146.
[18]  18 Farmer P, Bonnefoi H, Anderle P, et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer[J]. Nat Med, 2009, 15(1): 68-74.
[19]  19 Finak G, Bertos N, Pepin F, et al. Stromal gene expression predicts clinical outcome in breast cancer[J]. Nat Med, 2008, 14(5): 518-527.
[20]  20 Vermeulen L, Melo FD, Van Der Heijden M, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment[J]. Nat Cell Biol, 2010, 12(5): 468-U121.
[21]  21 Fillmore CM, Gupta PB, Rudnick JA, et al. Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling[J]. Proc Natl Acad Sci USA, 2010, 107(50): 21737-21742.
[22]  22 Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion[J]. Cell, 2005, 121(3): 335-348.
[23]  23 Jung MJ, Rho JK, Kim YM, et al. Upregulation of CXCR4 is functionally crucial for maintenance of stemness in drug-resistant non-small cell lung cancer cells[J]. Oncogene, 2013, 32(2): 209-221.
[24]  24 Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity[J]. Curr Opin Immunol, 2010, 22(2): 231-237.
[25]  25 Fischer C, Jonckx B, Mazzone M, et al. Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels[J]. Cell, 2007, 131(3): 463-475.
[26]  26 Mitchem JB, Brennan DJ, Knolhoff BL, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses[J]. Cancer Res, 2013, 73(3): 1128-1141.
[27]  27 Fan QM, Jing YY, Yu GF, et al. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma[J]. Cancer Lett, 2014, 352(2): 160-168.
[28]  28 Yang J, Liao D, Chen C, et al. Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway[J]. Stem Cells, 2013, 31(2): 248-258.
[29]  29 Ding J, Jin W, Chen C, et al. Tumor associated macrophage × cancer cell hybrids May acquire cancer stem cell properties in breast cancer[J]. PLoS One, 2012, 7(7): e41942.
[30]  30 Jinushi M, Chiba S, Yoshiyama HA, et al. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells[J]. Proc Natl Acad Sci USA, 2011, 108(30): 12425-12430.
[31]  31 Yu X, Li H, Ren X. Interaction between regulatory T cells and cancer stem cells[J]. Int J Cancer, 2012, 131(7): 1491-1498.
[32]  32 Pe?uelas S, Anido J, Prieto-Sánchez RM, et al. TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma[J]. Cancer Cell, 2009, 15(4): 315-327.
[33]  33 Wei J, Barr J, Kong LY, et al. Glioma-associated cancer-initiating cells induce immunosuppression[J]. Clin Cancer Res, 2010, 16(2): 461-473.
[34]  34 Kerbel RS. Tumor angiogenesis[J]. N Engl J Med, 2008, 358(19): 2039-2049.
[35]  35 Ping YF, Bian XW. Consice review: contribution of cancer stem cells to neovascularization[J]. Stem Cells, 2011, 29(6): 888-894.
[36]  36 Bhati R, Patterson C, Livasy CA, et al. Molecular characterization of human breast tumor vascular cells[J]. Am J Pathol, 2008, 172(5): 1381-1390.
[37]  37 Bao S, Wu Q, Sathornsumetee S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor[J]. Cancer Res, 2006, 66(16): 7843-7848.
[38]  38 Grange C, Tapparo M, Collno F, et al. Microvesicles released from human renal cancer stem cells stiulate angiogenesis and formation of lung pre-metastatic niche[J]. Cancer Res, 2011, 71(15): 5346-5356.
[39]  39 Folkins C, Shaked Y, Man S, et al. Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1[J]. Cancer Res, 2009, 69(18): 7243-7251.
[40]  40 Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells[J]. Cancer Cell, 2007, 11(1): 69-82.
[41]  41 Pàez-Ribes M, Allen E, Hudock J, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis[J]. Cancer Cell, 2009, 15(3): 220-231.
[42]  43 Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression[J]. J Cell Biol, 2012, 196(4): 395-406.
[43]  44 Lu P, Takai K, Weaver VM, et al. Extracellular matrix degradation and remodeling in development and disease[J]. Cold Spring Harb Perspect Biol, 2011, 3(12): pii: a005058.
[44]  45 Wong GS, Rustgi AK. Matricellular proteins: priming the tumour microenvironment for cancer development and metastasis[J]. Br J Cancer, 2013, 108(4): 755-761.
[45]  42 Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth[J]. Nat Med, 2001, 7(11): 1194-1201.
[46]  46 Li L, Cole J, Margolin DA. Cancer stem cell and stromal microenvironment[J]. Ochsner J, 2013, 13(1): 109-118.
[47]  47 Li L, Xie T. Stem cell niche: structure and function[J]. Annu Rev Cell Dev Biol, 2005, 21: 605-631.
[48]  48 Casazza A, Di Conza G, Wenes M, et al. Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment[J]. Oncogene, 2014, 33(14): 1743-1754.
[49]  49 Li P, Zhou C, Xu L, et al. Hypoxia enhances stemness of cancer stem cells in glioblastoma: an in vitro study[J]. Int J Med Sci, 2013, 10(4): 399-407.
[50]  50 Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer[J]. Cell, 2007, 129(3): 465-472.
[51]  51 Raval RR, Lau KW, Tran MG, et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma[J]. Mol Cell Biol, 2005, 25(13): 5675-5686.
[52]  52 Covello KL, Kehler J, Yu H, et al. HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth[J]. Genes Dev, 2006, 20(5): 557-570.
[53]  53 Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells[J]. Nat Biotechnol, 2007, 25(10): 1177-1181.
[54]  54 Conley SJ, Gheordunescu E, Kakarala P, et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia[J]. Proc Natl Acad Sci USA, 2012, 109(8): 2784-2789.
[55]  55 Gustafsson MV, Zheng X, Pereira T, et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state[J]. Dev Cell, 2005, 9(5): 617-628.
[56]  56 Heddleston JM, Li Z, Mclendon RE, et al. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype[J]. Cell Cycle, 2009, 8(20): 3274-3284.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133