9 Milas L, Hunter NR, Mason KA, et al. Role of reoxygenation in induction of enhancement of tumor radioresponse by paclitaxel[J]. Cancer Res, 1995, 55(16): 3564-3568.
[3]
10 Berdis AJ. Current and emerging strategies to increase the efficacy of ionizing radiation in the treatment of cancer[J]. Expert Opin Drug Discov, 2014, 9(2): 167-181.
12 Bartek J, Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer[J]. Cancer Cell, 2003, 3(5): 421-429.
[6]
13 Rockwell S, Dobrucki IT, Kim EY, et al. Hypoxia and radiation therapy: past history, ongoing research, and future promise[J]. Curr Mol Med, 2009, 9(4): 442-458.
[7]
14 Ghattass K, Assah R, El-Sabban M, et al. Targeting hypoxia for sensitization of tumors to radio- and chemotherapy[J]. Curr Cancer Drug Targets, 2013, 13(6): 670-685.
16 Hay MP, Hicks KO, Wang J. Hypoxia-directed drug strategies to target the tumor microenvironment[J]. Adv Exp Biol, 2014(772): 111-145.
[10]
17 Wilson WR, Hay MP. Targeting hypoxia in cancer therapy[J]. Nat Rev Cancer, 2011, 11(6): 393-410.
[11]
18 Ahmad S. Platinum-DNA interactions and subsequent cellular processes controlling sensitivity to anticancer Platinum complexes[J]. Chem Biodivers, 2010, 7(3): 543-566.
[12]
19 Rezaee M, Hunting DJ, Sanche L. New insights into the mechanism underlying the synergistic action of ionizing radiation with Platinum chemotherapeutic drugs: the role of low-energy electrons[J]. Int J Radiat Oncol Biol Phys, 2013, 87(4): 847-853.
[13]
20 Khalaj A, Abdi K, Ostad SN, et al. Synthesis, in vitro cytotoxicity and radiosensitizing activity of novel 3-[(2,4-dinitrophenylamino)alkyl] derivatives of 5-fluorouracil[J]. Chem Biol Drug Des, 2014, 83(2): 183-190.
[14]
21 Abraham RT. PI 3-kinase related kinases: ‘big’ players in stress-induced signaling pathways[J]. DNA Repair (Amst), 2004, 3(8/9): 883-887.
[15]
22 Deorukhkar A, Shentu S, Park HC, et al. Inhibition of radiation-induced DNA repair and prosurvival pathways contributes to vorinostat-mediated radiosensitization of pancreatic cancer cells[J]. Pancreas, 2010, 39(8): 1277-1283.
[16]
23 Mueller S, Yang X, Sottero TL, et al. Cooperation of the HDAC inhibitor vorinostat and radiation in metastatic neuroblastoma: efficacy and underlying mechanisms[J]. Cancer Lett, 2011, 306(2): 223-229.
[17]
24 Palmieri D, Lockman PR, Thomas FC, et al. Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks[J]. Clin Cancer Res, 2009, 15(19): 6148-6157.
[18]
25 Oike T, Ogiwara H, Torikai K, et al. Garcinol, a histone acetyltransferase inhibitor, radiosensitizes cancer cells by inhibiting non-homologous end joining[J]. Int J Radiat Oncol Biol Phys, 2012, 84(3): 815-821.
[19]
26 Sandur SK, Deorukhkar A, Pandey MK, et al. Curcumin modulates the radiosensitivity of colorectal cancer cells by suppressing constitutive and inducible NF-kappaB activity[J]. Int J Radiat Oncol Biol Phys, 2009, 75(2): 534-542.
[20]
36 Wargelius A, Ellingsen S, Fjose A. Double-stranded RNA induces specific developmental defects in zebrafish embryos[J]. Biochem Biophys Res Commun, 1999, 263(1): 156-161.
[21]
37 Wu J, Lai G, Wan F, et al. Knockdown of checkpoint kinase 1 is associated with the increased radiosensitivity of glioblastoma stem-like cells[J]. Tohoku J Exp Med, 2012, 226(4): 267-274.
[22]
38 Ma Z, Yao G, Zhou B, et al. The Chk1 inhibitor AZD7762 sensitises p53 mutant breast cancer cells to radiation in vitro and in vivo[J]. Mol Med Rep, 2012, 6(4): 897-903.
41 Sun JD, Liu Q, Wang J, et al. Selective tumor hypoxia targeting by hypoxia-activated prodrug TH-302 inhibits tumor growth in preclinical models of cancer[J]. Clin Cancer Res, 2012, 18(3): 758-770.
[26]
42 Lohse I, Rasowski J, Cao PJ, et al. Targeting tumor hypoxia in patient-derived pancreatic xenografts using TH-302[J]. Cancer Res, 2012, 72(14 Supple): A43.
[27]
43 Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism[J]. Nat Rev Cancer, 2011, 11(2): 85-95.
[28]
44 Kurtoglu M, Gao N, Shang J, et al. Under normoxia, 2-deoxy-D-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation[J]. Mol Cancer Ther, 2007, 6(11): 3049-3058.
46 Anderson P, Aguilera D, Pearson M, et al. Outpatient chemotherapy plus radiotherapy in sarcomas: improving cancer control with radiosensitizing agents[J]. Cancer Control, 2008, 15(1): 38-46.
48 Chakraborty M, Gelbard A, Carrasquillo J, et al. Systemic radioimmunotherapy in synergy with vaccine renders antitumor effects in a preclinical model[M]. AACR Annual Proceedings, 2006: 1165.
50 Demaria S, Formenti SC. Sensors of ionizing radiation effects on the immunological microenvironment of cancer[J]. Int J Radiat Biol, 2008, 83(11/12): 819-825.
[35]
51 Demaria S, Bhardwaj N, McBride WH, et al. Combining radiotherapy and immunotherapy: a revived partnership[J]. Int J Radiat Oncol Biol Phys, 2005, 63(3): 655-666.
[36]
52 Tesniere A, Panaretakis T, Kepp O, et al. Molecular characteristics of immunogenic cancer cell death[J]. Cell Death Differ, 2008, 15(1): 3-12.
[37]
53 Ferrara TA, Hodge JW, Gulley JL. Combining radiation and immunotherapy for synergistic antitumor therapy[J]. Curr Opin Mol Ther, 2009, 11(1): 37-42.
[38]
54 Wers?ll PJ, Blomgren H, Pisa P, et al. Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma[J]. Acta Oncol, 2006, 45(4): 493-497.
[39]
55 Nesslinger NJ, Sahota RA, Stone B, et al. Standard treatments induce antigen-specific immune responses in prostate cancer[J]. Clin Cancer Res, 2007, 13(5): 1493-1502.
[40]
56 Okawa T, Kita M, Arai T, et al. Phase Ⅱ randomized clinical trial of LC9018 concurrently used with radiation in the treatment of carcinoma of the uterine cervix. Its effect on tumor reduction and histology[J]. Cancer, 1989, 64(9): 1769-1776.
[41]
57 Gulley JL, Arlen PM, Bastian A, et al. Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer[J]. Clin Cancer Res, 2005, 11(9): 3353-3362.
[42]
58 Chi KH, Liu SJ, Li CP, et al. Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma[J]. J Immunother, 2005, 28(2): 129-135.
[43]
59 Cmielová J, Havelek R, Jiroutová A, et al. DNA damage caused by ionizing radiation in embryonic diploid fibroblasts WI-38 induces both apoptosis and senescence[J]. Physiol Res, 2011, 60(4): 667.
[44]
60 Kim VN. MicroRNA biogenesis: coordinated cropping and dicing[J]. Nat Rev Mol Cell Biol, 2005, 6(5): 376-385.
[45]
1 Delaney G, Jacob S, Featherstone C, et al. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines[J]. Cancer, 2005, 104(6): 1129-1137.
[46]
2 Giusti AM, Raimondi M, Ravagnan G, et al. Human cell membrane oxidative damage induced by single and fractionated doses of ionizing radiation: a fluorescence spectroscopy study[J]. Int J Radiat Biol, 1998, 74(5): 595-605.
[47]
3 Maisin JR, Van Gorp U, De Saint-Georges L. The ultrastructure of the lung after exposure to ionizing radiation as seen by transmission and scanning electron microscopy[J]. Scan Electron Microsc, 1982(Pt 1): 403-412.
[48]
4 Azzam EI, De Toledo SM, Little JB. Expression of CONNEXIN43 is highly sensitive to ionizing radiation and other environmental stresses[J]. Cancer Res, 2003, 63(21): 7128-7135.
[49]
5 Dayal D, Martin SM, Owens KM, et al. Mitochondrial complex Ⅱ dysfunction can contribute significantly to genomic instability after exposure to ionizing radiation[J]. Radiat Res, 2009, 172(6): 737-745.
[50]
6 Bhide SA, Nutting CM. Recent advances in radiotherapy[J]. BMC Med, 2010, 8: 25.
27 Sun YL, Jiang XF, Chen SJ, et al. Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation[J]. FEBS Lett, 2006, 580(18): 4353-4356.
[53]
28 Oike T, Komachi M, Ogiwara H, et al. C646, a selective small molecule inhibitor of histone acetyltransferase p300, radiosensitizes lung cancer cells by enhancing mitotic catastrophe[J]. Radiother Oncol, 2014, 111(2): 222-227.
[54]
29 Mitchell J, Smith GC, Curtin NJ. Poly(ADP-Ribose) polymerase-1 and DNA-dependent protein kinase have equivalent roles in double Strand break repair following ionizing radiation[J]. Int J Radiat Oncol Biol Phys, 2009, 75(5): 1520-1527.
[55]
30 Dungey FA, L?ser DA, Chalmers AJ. Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-Ribose) polymerase: mechanisms and therapeutic potential[J]. Int J Radiat Oncol Biol Phys, 2008, 72(4): 1188-1197.
[56]
31 Senra JM, Telfer BA, Cherry KE, et al. Inhibition of PARP-1 by olaparib (AZD2281) increases the radiosensitivity of a lung tumor xenograft[J]. Mol Cancer Ther, 2011, 10(10): 1949-1958.
[57]
32 Wang L, Mason KA, Ang KK, et al. MK-4827, a PARP-1/-2 inhibitor, strongly enhances response of human lung and breast cancer xenografts to radiation[J]. Invest New Drugs, 2012, 30(6): 2113-2120.
[58]
33 Rouse J, Jackson SP. Interfaces between the detection, signaling, and repair of DNA damage[J]. Science, 2002, 297(5581): 547-551.
[59]
34 Liu XD, Ma SM, Liu Y, et al. Short hairpin RNA and retroviral vector-mediated silencing of p53 in mammalian cells[J]. Biochem Biophys Res Commun, 2004, 324(4): 1173-1178.
[60]
35 Baulcombe DC. Fast forward genetics based on virus-induced gene silencing[J]. Curr Opin Plant Biol, 1999, 2(2): 109-113.
[61]
61 Nilsen TW. Mechanisms of microRNA-mediated gene regulation in animal cells[J]. Trends Genet, 2007, 23(5): 243-249.
[62]
62 Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases[J]. Cell Res, 2008, 18(10): 997-1006.
[63]
63 Kasinski AL, Slack FJ. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy[J]. Nat Rev Cancer, 2011, 11(12): 849-864.
[64]
64 Wang JF, Wu X, Ding N, et al. Identification and application of radiation-related microRNAs[J]. Rendiconti Lincei, 2014, 25(1): 49-52.
[65]
65 Butterworth KT, Mcmahon SJ, Currell FJ, et al. Physical basis and biological mechanisms of gold nanoparticle radiosensitization[J]. Nanoscale, 2012, 4(16): 4830-4838.
[66]
66 Mohammad B, Maryam G. A systematic review of gold nanoparticles as novel cancer therapeutics[J]. J Nanomed, 2014, 1(4): 211-219.
[67]
67 Joh DY, Sun L, Stangl M, et al. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization[J]. PLoS One, 2013, 8(4): e62425.
[68]
68 Zhang XD, Luo Z, Chen J, et al. Ultrasmall Au(10-12)(SG)(10-12) nanomolecules for high tumor specificity and cancer radiotherapy[J]. Adv Mater, 2014, 26(26): 4565-4568.