Verhaegen F, Seuntjens J. Monte Carlo modelling of external radiotherapy photon beams[J]. Phys Med Biol, 2003, 48(21): 107-164.
[2]
Chetty IJ, Curran B, Cygler JE, et al. Report of the AAPM Task Group No. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning[J]. Med Phys, 2007, 34(12): 4818-4853.
[3]
Spezi E, Lewis G. An overview of monte carlo treatment planning for radiotherapy[J]. Radiat Prot Dosimetry, 2008, 131(1): 123-129.
[4]
Fasso A, Ferrari A, Ranft J, et al. Fluka: a multi-particle transport code[R]. Stanford University, Stanford: SLAC-R-773, 2005.
[5]
Brown FB. MCNP-a general Monte Carlo-particle transport code[R]. Version 5. Los Alamos National Laboratory, Los Alamos: Report LA-UR-03, 2003.
[6]
顾本广. 医用加速器[M]. 北京: 科学出版社, 2003: 276-320.
[7]
Rogers DW, Faddegon BA, Ding G, et al. BEAM: a Monte Carlo code to simulate radiotherapy treatment[J]. Med Phys, 1995, 22(5): 503-524.
[8]
Schach von Wittenau AE, Cox LJ, Bergstrom PM, et al. Correlated histogram representation of Monte Carlo derived medical accelerator photon-output phase space[J]. Med Phys, 1999, 26(7): 1196-1211.
[9]
Spezi E. Status of MCTP in Europe[J]. Radiother Oncol, 2007, 84: 6-7.
[10]
Papanikolaou N, Battista J, Boyer A, et al. AAPM Report No. 85: Tissue inhomogeneity corrections for megavoltage photon beams[R], Madison, WI: AAPM Report No. 85. 2004.
[11]
DeMarco JJ, Solberg TD, Smathers JB. A CT-based Monte Carlo simulation tool for dosimetry planning and analysis[J]. Med Phys, 1998, 25(1): 1-11.
[12]
du Plessis FC, Willemse CA, Lotter MG, et al. The indirect use of CT numbers to establish material properties needed for Monte Carlo calculation of dose distributions in patients[J]. Med Phys, 1998, 25(7): 1195-1201.
[13]
Wang L, Lovelock M, Chui CS. Experimental verification of a CT-based Monte Carlo dose-calculation method in heterogeneous phantoms[J]. Med Phys, 1999, 26(12): 2626-2634.
[14]
Vanderstraeten B, Chin PW, Fix M, et al. Conversion of CT numbers into tissue parameters for Monte Carlo dose calculations: a multi-centre study[J]. Phys Med Biol, 2007, 52(3): 539-562.
[15]
Fippel M. Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm[J]. Med Phys, 1999, 26(8): 1466-1475.
[16]
Verhaegen F, Devic S. Sensitivity study for CT image use in Monte Carlo treatment planning[J]. Phys Med Biol, 2005, 50(5): 937-946.
[17]
Bazalova M, Beaulieu L, Palefsky S, et al. Correction of CT artifacts and its influence on Monte Carlo dose calculations[J]. Med Phys, 2007, 34(6): 2119-2132.
[18]
Yamamoto T, Mizowaki T, Miyabe Y, et al. An integrated Monte Carlo dosimetric verification system for radiotherapy treatment planning[J]. Phys Med Biol, 2007, 52(7): 1991-2008.
[19]
Alexander A, Deblois F, Stroian G, et al. MMCTP: a radiotherapy research environment for Monte Carlo and patientspecific treatment planning[J]. Phys Med Biol, 2007, 52(13): 297-308.
[20]
Fix MK, Manser P, Frei D, et al. An efficient framework for photon Monte Carlo treatment planning[J]. Phys Med Biol, 2007, 52(19): 425-437.
[21]
Metropolis N. The beginning of the Monte Cavlo Method[J]. Los Alamos Sci, 1987, 15: 125-130.
[22]
Bjarngard B, Kase K, Attix F. The dosimetry of ionizing radiation[M]. New York: Academic, 1990, Ⅲ: 427-539.
[23]
殷蔚伯, 谷铣之. 肿瘤放射治疗学[M], 北京: 中国协和医科大学出版社, 2002: 1-2.
[24]
Department of Health. Cancer reform strategy[EB/OL]. London: http: //www. dh. gov. uk/publications. 2007.
[25]
Kawrakow I, Rogers DWO. The EGSnrc code system: Monte Carlo simulation of electron and photon transport[R]. National Research Council of Canada, Ottawa: Technical Report PIRS-701, 2000.
[26]
Baro J, Sempau J, Fernandez-Varea JM, et al. PENELOPE-an algorithm for Monte-Carlo simulation of the penetration and energy-loss ofelectrons and positrons in matter[J]. Nucl Instrum Meth Phys Res, 1995, 100(A): 31-46.
Halbleib JA, Kensek RP, Mehlhorn TA, et al. ITS Version 3. 0: the Integrated TIGER Series of coupled Electron/Photon Monte Carlo Transport Codes Report[R]. Albuquerque, NM, Sandia National Laboratories: SAND91-1634, 1992.
[29]
Khan FM. The physics of radiation therapy[M]. Philadelphia: Lippincott Williams Wilkins, 2003: 59-77.
[30]
Kawrakow I, Rogers DWO, BRB. Walters Large efficiency improvements in BEAMnrc using directional bremsstrahlung splitting[J]. Med Phys, 2004, 31(10): 2883-2898.
[31]
Kawrakow I. On the efficiency of photon beam treatment head simulations[J]. Med Phys, 2005, 32(7): 2320-2326.
[32]
Rogers DWO, Ma C-M, Walters B, et al. BEAMnrc Users Manual[R]. National Research Council Canada, Ottawa: PIRS-0509, 2002.
[33]
Yaikhom G, Giddy JP, Walker DW, et al. A distributed simulation framework for conformal radiotherapy[A]. IEEE Computer Society: Proceedings of the 22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2008: 2993-3000.
[34]
Ma CM, Faddegon BA, Rogers DWO, et al. Accurate characterization of Monte Carlo calculated electron beams for radiotherapy[J]. Med Phys, 1997, 24(3): 401-416.
[35]
Yang J, Li JS, Qin L, et al. Modelling of electron contamination in clinical photon beams for Monte Carlo dose calculation[J]. Phys Med Biol, 2004, 49(12): 2657-2673.
[36]
Fippel M, Haryanto F, Dohm O, et al. A virtual photon energy fluence model for Monte Carlo dose calculation[J]. Med Phys, 2003, 30(3): 301-311.
[37]
Kawrakow I. VMC++ electron and photon Monte Carlo calculations optimized for radiation treatment planning: advanced Monte Carlo for radiation physics, particle transport simulation and applications[A]. Springer, Berlin: Proceedings of the Monte Carlo 2000 Meeting, 2001: 229-236.
[38]
Fotina I, Winkler P, Thomas Künzler, et al. Advanced kernel methods vs. Monte Carlo-based dose calculation for high energy photon beams[J]. Radiother Oncol, 2009, 93(3): 645-653.