全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
华西医学  2011 

辅助性T细胞17和实验性自身免疫性葡萄膜炎

, PP. 301-304

Keywords: 辅助性T淋巴细胞17,实验性自身免疫性葡萄膜炎,白介素-17

Full-Text   Cite this paper   Add to My Lib

Abstract:

【】 辅助性T细胞17(T-helpertype17,Th17)是一种以分泌白介素-17(IL-17)为特征的辅助性T淋巴细胞亚型,在自身免疫性疾病中的作用逐渐得到重视。葡萄膜炎是最常见的致盲眼病,一直是眼科研究的热点和难点。实验性自身免疫性葡萄膜炎(experimentalautoimmuneuveoretinitis,EAU)是葡萄膜炎研究的成熟动物模型,有关Th17和EAU关系的研究处于起步阶段,现就这方面的研究现状进行综述,为葡萄膜炎的免疫机制研究提供新思路。

References

[1]   Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins[J]. J Immunol, 1986, 136(7): 2348-2357.
[2]   Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain[J]. Nature, 2003, 421(6924): 744-748.
[3]   Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation[J]. J Exp Med, 2005, 201(2): 233-240.
[4]   Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J]. Nat Immunol, 2005, 6(11): 1133-1141.
[5]   Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells[J]. Nature, 2006, 441(7090): 235-238.
[6]   Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells[J]. Nature, 2007, 448(7152): 484-487.
[7]   Yang L, Anderson DE, Baecher-Allan C, et al. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells[J]. Nature, 2008, 454(7202): 350-352.
[8]   Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6[J]. J Clin Invest, 2006, 116(5): 1310-1316.
[9]   Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4?+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nat Immunol, 2005, 6(11): 1123-1132.
[10]   Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17[J]. J Biol Chem, 2003, 278(3): 1910-1914.
[11]   Chen Z, Laurence A, O’Shea JJ. Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation[J]. Semin Immunol, 2007, 19(6): 400-408.
[12]   Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17?+ T helper cells[J]. Cell, 2006, 126(6): 1121-1133.
[13]   Joosten LA, Abdollahi-Roodsaz S, Heuvelmans-Jacobs M, et al. T cell dependence of chronic destructive murine arthritis induced by repeated local activation of Toll-like receptor-driven pathways: crucial role of both interleukin-1beta and interleukin-17[J]. Arthritis Rheum, 2008, 58(1): 98-108.
[14]   Mangan PR, Harrington LE, O’Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage[J]. Nature, 2006, 441(7090): 231-234.
[15]   Zhou L, Lopes JE, Chong MM, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function[J]. Nature, 2008, 453(7192): 236-240.
[16]   Haak S, Croxford AL, Kreymborg K, et al. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice[J]. J Clin Invest, 2009, 119(1): 61-69.
[17]   Yoshimura T, Sonoda KH, Ohguro N, et al. Involvement of Th17 cells and the effect of anti-IL-6 therapy in autoimmune uveitis[J]. Rheumatology(Oxford), 2009, 48(4): 347-354.
[18]   Hohki S, Ohguro N, Haruta H, et al. Blockade of interleukin-6 signaling suppresses experimental autoimmune uveoretinitis by the inhibition of inflammatory Th17 responses[J]. Exp Eye Res, 2010, 91(2): 162-170.
[19]   Bain DL, Heneghan AF, Connaghan-Jones KD, et al. Nuclear receptor structure: implications for function[J]. Annu Rev Physiol, 2007, 69: 201-220.
[20]   Mucida D, Park Y, Kim G, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid[J]. Science (NY), 2007, 317(5835): 256-260.
[21]   Sun CM, Hall JA, Blank RB, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid[J]. J Exp Med, 2007, 204(8): 1775-1785.
[22]   Lathrop SK, Santacruz NA, Pham D, et al. Antigen-specific peripheral shaping of the natural regulatory T cell population[J]. J Exp Med, 2008, 205(13): 3105-3117.
[23]   Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD103?+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism[J]. J Exp Med, 2007, 204(8): 1757-1764.
[24]   Elias KM, Laurence A, Davidson TS, et al. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway[J]. Blood, 2008, 111(3): 1013-1020.
[25]   Schambach F, Schupp M, Lazar MA, et al. Activation of retinoic acid receptor-alpha favours regulatory T cell induction at the expense of IL-17-secreting T helper cell differentiation[J]. Eur J Immuol, 2007, 37(9): 2396-2399.
[26]   Xiao S, Jin H, Korn T, et al. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression[J]. J Immunol, 2008, 181(4): 2277-2284.
[27]   Keino H, Watanabe T, Sato Y, et al. Anti-inflammatory effect of retinoic acid on experimental autoimmune uveoretinitis[J]. Br J Ophthalmol, 2010, 94(6): 802-807.
[28]   Caspi RR. Th1 and Th2 responses in pathogenesis and regulation of experimental autoimmune uveoretinitis[J]. Int Rev Immunol, 2002, 21(2-3): 197-208.
[29]   Amadi-Obi A, Yu CR, Liu X, et al. TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1[J]. Nat Med, 2007, 13(6): 711-718.
[30]   Luger D, Silver PB, Tang J, et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category[J]. J Exp Med, 2008, 205(4): 799-810.
[31]   Tarrant TK, Silver PB, Chan CC, et al. Endogenous IL-12 is required for induction and expression of experimental autoimmune uveitis[J]. J Immunol, 1998, 161(1): 122-127.
[32]   Yoshimura T, Sonoda KH, Ohguro N, et al. Involvement of Th17 cells and the effect of anti-IL-6 therapy in autoimmune uveitis[J]. Rheumatology (Oxford), 2009, 48(4): 347-354.
[33]   Brereton CF, Sutton CE, Lalor SJ, et al. Inhibition of ERK MAPK suppresses IL-23- and IL-1-driven IL-17 production and attenuates autoimmune disease[J]. J Immunol, 2009, 183(3): 1715-1723.
[34]   Liu X, Lee YS, Yu CR, et al. Loss of STAT3 in CD4+ T cells prevents development of experimental autoimmune diseases[J]. J Immunol, 2008, 180(9): 6070-6076.
[35]   Wei L, Laurence A, Elias KM, et al. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner[J]. J Biol Chem, 2007, 282(48): 34605-34610.
[36]   Niedbala W, Wei XQ, Cai B, et al. IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells[J]. Eur J Immunol, 2007, 37(11): 3021-3029.
[37]   Batten M, Li J, Yi S, et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells[J]. Nat Immunol, 2006, 7(9): 929-936.
[38]   McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology[J]. Nat Immunol, 2007, 8(12): 1390-1397.
[39]   Spolski R, Leonard WJ. Interleukin-21: basic biology and implications for cancer and autoimmunity[J]. Annu Rev Immunol, 2008, 26: 57-79.
[40]   Zheng Y, Danilenko DM, Valdez P, et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis[J]. Nature, 2007, 445(7128): 648-651.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133