[ 1 ] Yang W, Lu J ,Weng J, et al. Prevalence of Diabetes among Men and Women in China[J]. N Engl J Med, 2010, 362(12): 1090-1101.
[2]
[ 2 ] L lewelyn JG. The diabetic neuropathies: types, diagnosis and management[J]. J Neurol Neurosurg Psychiatry, 2003, 74(2): 5-7.
[3]
[ 3 ] Yamada N, Horikawa Y, Oda N, et al. Genetic variation in the hypoxia-inducible factor-1αgene is associated with type 2 diabetes in Japanese[J]. J Clin Endocrinol Metab, 2005, 90(10): 5841-5847.
[4]
[ 4 ] Hughes JM, Groot AJ, Groep P, et al. Active HIF-1 in the normal human retina[J]. J Histochem Cytochem, 2010, 58(3): 247-254.
[5]
[ 5 ] Wang JJ, Zhang SX, Mott R, et al. Anti-inflammatory effects of pigment epithelium-derived factor in diabetic nephropathy[J]. Am J Physiol Renal Physiol, 2008, 294(5): 1166-1173.
[ 7 ] Chavez JC, Almhanna K, Berti-Mattera LN. Transient expression of hypoxia-inducible factor-1 alpha and target genes in peripheral nerves from diabetic rats[J]. Neurosci Lett, 2005, 374(3): 179-182.
[8]
[ 8 ] Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J]. Mol Cell Biol, 1992, 12(12): 5447-5454.
[9]
[ 9 ] Bento CF, Pereira P. Regulation of hypoxia-inducible factor 1 and the loss of the cellular response to hypoxia in diabetes[J]. Diabetologia, 2011, 54(8): 1946-1956.
[10]
Botusan IR, Sunkari VG, Savu O, et al. Stabilization of HIF-1α is critical to improve wound healing in diabetic mice[J]. Proc Natl Acad Sci, 2009, 105(49): 19426-19431.
[11]
Molitoris KH, Kazi AA, Koos RD. Inhibition of oxygen-induced hypoxia-inducible factor-1 degradation unmasks estradiol induction of vascular endothelial growth factor expression in ecc-1 cancer cells in vitro[J]. Endocrinology, 2009, 150(12): 5405-5414.
[12]
Sarkar K, Talbot KF, Steenbergen C, et al. Adenoviral transfer of HIF-1 enhances vascular responses to critical limb ischemia in diabetic mice[J]. Proc Natl Acad Sci, 2009, 106(44): 18769-18774.
[13]
Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1[J]. Mol Cell Biol, 1996, 16(9): 4604-4613.
[14]
Semenza GL. HIF-1: Using two hands to flip the angiogenic switch[J]. Cancer Metastasis Rev, 2000, 19(1): 59-65.
[15]
Guillemin K, Krasnow MA. The hypoxic response: huffing and hifing[J]. Cell, 1997, 89(1): 9-12.
[16]
Catrina SB, Okamoto K, Pereira T, et al. Hyperglycemia regulates hypoxia-inducible factor-1α protein stability and function[J]. Diabetes, 2004, 53(12): 3226?3232.
[17]
Thangarajah H, Yao D, Chang EI, et al. The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues[J]. Proc Natl Acad Sci, 2009, 106(32): 13505-13510.
[18]
Marfella R, Amico MD, Filippo D, et al. Myocardial infarction in diabetic rats: role of hyperglycaemia on infarct size and early expression of hypoxia-inducible factor 1[J]. Diabetologia, 2002, 45(8): 1172?1181.
[19]
Obrosova IG, Fathallah L, Stevens MJ. Taurine counteracts oxidative stress and nerve growth factor deficit in early experimental diabetic neuropathy[J]. Exp Neurol, 2001, 172(1): 211-219.
[20]
Ran R, Xu H, Lu A, et al. Hypoxia preconditioning in the brain[J]. Dev Neurosci, 2005, 27(2): 87-92.
[21]
Xie L, Johnson RS, Freeman RS. Inhibition of NGF deprivation?induced death by low oxygen involves suppression of BIMEL and activation of HIF-1[J]. J Cell Biology, 2005, 168(6): 911-920.
Schratzberger P, Walter DH, Rittig K, et al. Reversal of experimental diabetic neuropathy by VEGF gene transfer[J]. J Clin Invest, 2001, 107(9): 1083-1092.
[24]
Probst-Cousin S, Neundorfer B, Heuss D. Microvasculopathic neuromuscular diseases: Lessons from hypoxia-inducible factors[J]. Neuromuscul Disord, 2010, 20(3): 192-197.
[25]
Marfella R, Esposito K, Nappo F, et al. Expression of angiogenic factors during acute coronary syndromes in human type 2 diabetes[J]. Diabetes, 2004, 53(9): 2383-2391.
[26]
Huang YF, Yang CH, Huang CC, et al. Pharmacological and genetic accumulation of hypoxia-inducible factor-1α enhances excitatory synaptic transmission in hippocampal neurons through the production of vascular endothelial growth Factor[J]. J Neurosci, 2010, 30(17): 6080-6093.
[27]
Pichiule P, Chavez JC, Schmidt AM, et al. Hypoxia-inducible factor-1 mediates neuronal expression of the receptor for advanced glycation end products following hypoxia/ischemia[J]. Biol Chem, 2007, 282(50): 36330-36340.
[28]
Tacchini L, Ponti CD, Matteucci E, et al. Hepatocyte growth factor-activated NF-kB regulates HIF-1 activity and ODC expression, implicated in survival, differently in different carcinoma cell lines[J]. Carcinogenesis, 2004, 25(11): 2089-2100.
[29]
Dewhirst MW. Intermittent hypoxia furthers the rationale for hypoxia-inducible factor-1 targeting[J]. Cancer Res, 2007, 67(3): 854?855.
[30]
Piret JP, Minet E, Cosse JP, et al. Hypoxia-inducible factor-1-dependent overexpression of myeloid cell factor-1 protects hypoxic cells against tert-butyl hydroperoxide-induced apoptosis[J]. J Biol Chem, 2005, 280(10): 9336-9344.
[31]
Murakami T, Arai M, Sunada Y, et al. VEGF164 gene transfer by electroporation improves diabetic sensory neuropathy in mice[J]. J Gene Med, 2006, 8(6): 773?781.
[32]
Cheng L, Jia H, Lohr M, et al. Anti-chemorepulsive effects of vascular endothelial growth factor and placental growth factor-2 in dorsal root ganglion neurons are mediated via neuropilin-1 and cyclooxygenase-derived prostanoid production[J]. J Biol Chem, 2004, 279(29): 30654?30661.
[33]
Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1[J]. Physiology, 2009, 24(4): 97-106.
[34]
Campana WM, Myers RR. Erythropoietin and erythropoietin receptors in the peripheral nervous system: changes after nerve injury[J]. FASEB J, 2001, 15(10): 1804-1806.
[35]
Kilic E, Kilic U, Soliz J, et al. Brain-derived erythropoietin protects from focal cerebral ischemia by dual activation of ERK-1/-2 and Akt pathways[J]. FASEB J, 2005, 19(14): 2026-2028.
[36]
Yin ZS, Zhang H, Gao W. Erythropoietin promotes functional recovery and enhances nerve regeneration after peripheral nerve injury in rats[J]. AJNR Am J Neuroradiol, 2010, 31(3): 509-515.
[37]
Bianchi R, Buyukakilli B, Brines M, et al. Erythropoietin both protects from and reverses experimental diabetic neuropathy[J]. Proc Natl Acad Sci, 2004, 101(3): 823-828.
[38]
Chattopadhyay M, Walter C, Mata M, et al. Neuroprotective effect of herpes simplex virus-mediated gene transfer of erythropoietin in hyperglycemic dorsal root ganglion neurons[J]. Brain, 2009, 132(4): 879-888.
[39]
Taoufik E, Petit E, Divoux D, et al. TNF receptor I sensitizes neurons to erythropoietin and VEGF-mediated neuroprotection after ischemic and excitotoxic injury[J]. Proc Natl Acad Sci, 2008, 105(16): 6185-6190.
[40]
Weishaupt JH, Rohde G, Polking E, et al. Effect of erythropoietin axotomy-induced apoptosis in rat retinal ganglion cells[J]. Invest Ophthalmol Vis Sci, 2004, 45(5): 1514-1522.
[41]
Siren AL, Fratelli M, Brines M, et al. Erythropoietin prevents neuronal apoptosis aftercerebral ischemia and metabolic stress[J]. Proc Natl Acad Sci, 2001, 98(7): 4044-4049.
[42]
Shen JF, Wu YL, Xu JY, et al. ERK- and Akt-dependent neuroprotection by erythropoietin (EPO) against glyoxal-ages via modulation of bcl-xl, bax, and BAD[J]. Invest Ophthalmol Vis Sci, 2010, 51(1): 35-46.
[43]
Heinicke K, Baum O, Ogunshola O, et al. Excessive erythrocytosis in adult mice overexpressing erythropoietin leads to hepatic, renal, neuronal, and muscular degeneration[J]. Am J Physiol Regul Integr Comp Physiol, 2006, 291(4): 947-956.