Wong CS, Sceneay J, House CM, et al. Vascular normalization by loss of Siah2 results in increased chemotherapeutic efficacy[J]. Cancer Res, 2012, 72(7): 1694-1704.
[2]
Shen G, Li Y, Du T, et al. SKLB1002, a novel inhibitor of VEGF receptor 2 signaling, induces vascular normalization to improve systemically administered chemotherapy efficacy[J]. Neoplasma, 2012, 59(5): 486-493.
[3]
El Kaffas A, Giles A, Czarnota GJ. Dose-dependent response of tumor vasculature to radiation therapy in combination with Sunitinib depicted by three-dimensional high-frequency power Doppler ultrasound[J]. Angiogenesis, 2013, 16(2): 443-454.
[4]
Pàez-Ribes M, Allen E, Hudock J, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis[J]. Cancer Cell, 2009, 15(3): 220-231.
[5]
Ebos JM, Lee CR, Cruz-Munoz WA, et al. Accelerated metastasis after Short-Term treatment with a potent inhibitor of tumor angiogenesis[J]. Cancer Cell, 2009, 15(3): 232-239.
[6]
Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy[J]. Nat Rev Cancer, 2008, 8(8): 592-603.
[7]
Miles D, Harbeck N, Escudier B, et al. Disease course patterns after discontinuation of bevacizumab: pooled analysis of randomized phase Ⅲ trials[J]. J Clin Oncol, 2011, 29(1): 83-88.
[8]
Padera TP, Kuo AH, Hoshida T, et al. Differential response of primary tumor versus lymphatic metastasis to VEGFR-2 and VEGFR-3 kinase inhibitors cediranib and vandetanib[J]. Mol Cancer Ther, 2008, 7(8): 2272-2279.
[9]
Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy[J]. Science, 2005, 307(576): 58-62.
[10]
Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases[J]. Nat Rev Drug Discov, 2011, 10(6): 417-427.
[11]
Goel S, Duda DG, Xu L, et al. Normalization of the vasculature for treatment of cancer and other diseases[J]. Physiol Rev, 2011, 91(3): 1071-1121.
[12]
Sato Y. Persistent vascular normalization as an alternative goal of anti-angiogenic cancer therapy[J]. Cancer Sci, 2011, 102(7): 1253-1256.
[ 8 ] Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases[J]. Nature, 2000, 407(6801): 249-257.
[21]
[ 9 ] Mcdonald DM, Choyke PL. Imaging of angiogenesis: from microscope to clinic[J]. Nat Med, 2003, 9(6): 713-725.
[22]
Zhao J, Salmon H, Samtinoranont M. Effect of heterogenous vasculature on interstitial transport within a solid tumor[J]. Microvasc Res, 2007, 73(3): 224-236.
[23]
Fukumura D, Jain RK. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization[J]. Microvasc Res, 2007, 74 (2-3): 72-84.
[24]
Huang G, Chen L. Tumor vasculature and microenvironment normalization: a possible mechanism of antiangiogenesis therapy[J]. Cancer Biother Radiopharm, 2008, 23(5): 661-667.
[25]
Folkman J. Tumor angiogenesis: therapeutic implications[J]. N Engl J Med, 1971, 285(21): 1182-1186.
[26]
Steeg PS. Angiogenesis inhibitors: motivators of metastasis[J]. Nat Med, 2003, 9(7): 822-823.
[27]
Winkler F, Kozin SV, Tong RT, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalproteinases[J]. Cancer Cell, 2004, 6(6): 553-563.