全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于贝叶斯支持向量机模型选择算法改进

Keywords: 支持向量机,拟牛顿法,模型选择,置信度

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过对贝叶斯方法的分析,探讨了SVM的模型选择问题,提出SVM模型的选择可以看作等价于求解概率模型下置信度最大化的观点.首先,通过使用相关后验概率上的数学期望近似计算置信度梯度,然后用拟牛顿法求解置信度最大化问题.在数据集训练过程中引入阶梯度的SMO算法以提高训练效率.实验证明:此算法与网格法和Span估计法相比,改善了SVM的多参数选择问题,提高了执行效率.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133