全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
西北地质  2010 

人工智能神经网络在岩性识别、孔隙度和渗透率预测中的应用——以十红滩铀矿床为例

, PP. 32-37

Full-Text   Cite this paper   Add to My Lib

Abstract:

分析了传统测井解释方法的局限性。从神经网络的机理、特点出发,提出了一种基于人工智能神经网络技术的岩性识别、孔隙度和渗透率预测方法。首先选取适当的测井资料向量组成一个训练模式对,由多个训练模式对构成一个学习样本集。通过神经网络的学习,使网络记住这些特征并形成预测模型,最后根据预测模型计算相应参数。以十红滩地区的找矿目的层为对象,进行了岩性分析与对比,预测了孔隙度与渗透率,并与实测值进行了对比。上述实例分析表明,该方法用于砂岩型铀矿预测岩性、孔隙度和渗透率具有一定的可行性。与传统方法相比,该方法不需要建立具体的解释模型和计算公式,有较好的适应性和预测精度。基于人工智能神经网络技术的岩性识别、孔隙度和渗透率预测方法具有较高的实用价值。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133