全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Moment of Inertia Dependence of Vertical Axis Wind Turbines in Pulsating Winds

DOI: 10.1155/2012/910940

Full-Text   Cite this paper   Add to My Lib

Abstract:

Vertical Axis Wind Turbines (VAWTs) are unaffected by changes in wind direction, and they have a simple structure and the potential for high efficiency due to their lift driving force. However, VAWTs are affected by changes in wind speed, owing to effects originating from the moment of inertia. In this study, changes in the rotational speed of a small VAWT in pulsating wind, generated by an unsteady wind tunnel, are investigated by varying the wind cycle and amplitude parameters. It is shown that the responses observed experimentally agree with simulations based on torque characteristics obtained under steady rotational conditions. Additionally, a simple equation expressing the relationship between the rotational change width and amplitude of the pulsating wind is presented. The energy efficiency in a pulsating wind remains constant with changes in both the moment of inertia and the wind cycle; however, the energy efficiency decreases when the wind amplitude is large. 1. Introduction Vertical Axis Wind Turbines (VAWTs) [1] are promising energy devices [2–4]. They have a simple structure, their output power is unaffected by changes in wind direction, and based on their lift driving force, they have the potential for high efficiency. However, VAWTs are affected by wind speed variation, owing to their moment of inertia. As a result, rotor response to wind speed variation is important when considering the proper control of VAWTs. In general, for the design, analysis, and control of the more widely prevailing Horizontal Axis Wind Turbines (HAWTs), prediction of unsteady aerodynamic loads is challenging and crucial. For this reason, much effort has been put into modeling the unsteady aerodynamics of wind turbines [5]. In the case of VAWTs, even if the wind speed is constant, the angle of attack of the inflow to a blade periodically changes during rotation. Thus, dynamic analysis of a VAWT is essential for reliable design and reduction of cost [6]. In practice, the problems are even more complex, as the wind turbines are often installed under conditions of turbulence and abrupt wind-speed variations. Ordinarily, wind turbine performance predictions are compared with field or experimental data measured under constant wind speed. Recently, transient responses were measured for a straight-bladed VAWT subjected to steplike wind speed variation in an unsteady wind tunnel [7]. In the present study, to investigate the dependence of VAWT performance on the moment of inertia in unsteady wind, the response of a straight-bladed VAWT to a pulsating wind is measured,

References

[1]  I. Paraschivoiu, Wind Turbine Design with Emphasis on Darrieus Concept, Polytechnic International Press, 2000.
[2]  S. Mertens, G. van Kuik, and G. van Bussel, “Performance of an H-Darrieus in the skewed flow on a roof,” Journal of Solar Energy Engineering, Transactions of the ASME, vol. 125, no. 4, pp. 433–440, 2003.
[3]  G. van Bussel and S. Mertens, “Small wind turbines for the built environment,” in Proceedings of the 4th European and African Conference on Wind Engineering, paper #210, Prague, Czech, 2005.
[4]  G. Marsh and S. Peace, “Tilting at windmills,” Refocus, vol. 6, no. 5, pp. 37–42, 2005.
[5]  J. G. Leishman, “Challenges in modelling the unsteady aerodynamics of wind turbines,” Wind Energy, vol. 5, pp. 85–132, 2002.
[6]  S. Biswas, B. N. Sreedhard, and Y. P. Singh, “Dynamic analysis of a vertical axis wind turbine using a new windload estimation technique,” Computers and Structures, vol. 65, no. 6, pp. 903–916, 1997.
[7]  T. Hayashi, Y. Hara, T. Azui, and I. Kang, “Transient response of a vertical axis wind turbine to abrupt change of wind speed,” in Proceedings of the European Wind Energy Conference and Exhibition, p. 328, Marseille, France, 2009.
[8]  T. Hayashi, Y. Hara, I. Kang, et al., “Measurements of the wind generated by desert environment wind tunnel (constant speed wind and periodically varying wind),” Reports of the Faculty of Engineering, Tottori University, 2007, pp. 89–106.
[9]  Y. Hara, N. Hirata, and T. Hayashi, “Visualization of an isolated vortex ring generated from step-like wind variation and the overshoot phenomenon of axial velocity,” Journal of Fluid Science and Technology, vol. 6, no. 4, pp. 685–699, 2011.
[10]  I. Paraschivoiu, “Aerodynamic loads and performance of the Darrieus rotor,” AIAA Journal of Energy, vol. 6, no. 6, pp. 406–412, 1982.
[11]  R. E. Wilson and S. N. Walker, “Fixed-wake analysis of the Darrieus rotor,” Sandia Report SAND81-7026, 1981.
[12]  Y. Hara, “A study on low center-of-gravity wind turbine for built environment,” in Proceedings of the 13th International Conference on Wind Engineering (ICWE'13), Amsterdam, The Netherlands, 2011, Paper-No.096.
[13]  V. Kumar, M. Paraschivoiu, and I. Paraschivoiu, “Low Reynolds number vertical axis wind turbine for Mars,” Wind Engineering, vol. 34, no. 4, pp. 461–476, 2010.
[14]  R. E. Sheldahl and P. C. Klimas, “Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines,” Sandia Report SAND80-2114, 1981.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133