全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

海南岛热带山地雨林三种不同演替阶段 典型植物苗期光合特性研究

, PP. 563-571

Keywords: 天气,光合作用,幼苗,功能群,热带山地雨林

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究海南岛热带山地雨林不同演替阶段植物的光合特性,比较了不同光梯度下3个典型树种幼苗在晴天和阴天时的光合生理日变化过程。先锋种黄桐有最强的叶温控制能力,日变化中叶温低于中期种显脉杜英和顶极种乐东拟单性木兰。中期种显脉杜英有最高的光合生理可塑性,晴天时,显脉杜英净光合速率与黄桐差异不显著,叶温低于乐东拟单性木兰;阴天时,净光合速率和叶温与乐东拟单性木兰差异不显著。与显脉杜英相比,黄桐和乐东拟单性木兰的水分利用能力高,气孔导度、蒸腾速率低,水分利用效率高;黄桐的光合能力高,净光合速率比乐东拟单性木兰高。植物在光合能力、叶温控制能力、光合生理可塑性和水分利用能力上的差异对植物群落的演替有重要影响。

References

[1]  郭晓荣, 曹坤芳, 许再富. 热带雨林不同生态习性树种幼苗光合作用和抗氧化酶对生长光环境的反应[J]. 应用生态学报, 2004, 15(3): 377-381
[2]  Urban O, Janou? D, Acosta M, et al. Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation[J]. Global Change Biology, 2007, 13: 157-168
[3]  Rocha A V, Su H B, Vogel C S, et al. Photosynthetic and water use efficiency responses to diffuse radiation by an aspen-dominated northern hardwood forest[J]. Forest Science, 2004, 50: 793-801
[4]  Reinhardt K, Smith W K. Impacts of cloud immersion on microclimate, photosynthesis and water relations of Abies fraseri (Pursh.) Poiret in a temperate mountain cloud forest[J]. Oecologia, 2008, 158: 229?238
[5]  Lambers H, Chapin F S, Pons L. Plant physiological ecology[M]. New York: Springer-Verlag, 1998
[6]  Graham E A, Mulkey S S, Kitajima K, et al. Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons[J]. PNAS, 2003, 100: 572-576
[7]  Young D R, Smith W K. Effect of cloudcover on photosynthesis and transpiration in the subalpine understory species Arnica latifolia [J]. Ecology, 1983, 64: 681-687
[8]  Johnson D M, Smith W K. Low clouds and cloud immersion enhance photosynthesis in understory species of a southern Appalachian spruce-fir forest (USA)[J]. American Journal of Botany, 2006, 93 (11): 1625-1632
[9]  蒋有绪, 王伯荪, 臧润国, 等.海南岛热带林生物多样性及其形成机制[M]. 北京: 科学出版社, 2002:1-30
[10]  陈德祥, 李意德, 骆土寿, 等. 海南岛尖峰岭热带山地雨林下层乔木中华厚壳桂光合生理生态特性的研究[J]. 林业科学研究, 2003, 16(5): 540-547
[11]  陈德祥, 李意德, 骆土寿, 等. 短期CO2浓度升高对雨林树种盘壳栎光合特性的影响[J]. 生态学报, 2004, 24(8): 1622-1628
[12]  骆土寿, 李意德, 陈德祥, 等. 热带山地雨林恢复演替中优势树种黄桐气体交换对环境的响应[J]. 生态学报, 2003, 23(9): 1765-1772
[13]  刘福德,王中生,张 明,等.海南岛热带山地雨林幼苗优树光合与叶氮、叶磷及叶面积的关系[J].生态学报,2007,27(11):4651-4661
[14]  张 明, 王文进, 刘福德, 等. 海南热带山地雨林幼苗幼树的光合能力与水分利用效率[J]. 应用生态学报, 2007, 18(10): 2160-2166
[15]  杨小波. 不同演替阶段森林群落典型种苗木叶形态解剖结构比较研究[J]. 海南大学学报:自然科学版, 1997, 15(3): 212-217
[16]  粟 娟, 王德祯, 符史深. 海南岛尖峰岭热带树木园主要树种的物候研究[J]. 林业科学研究, 1994, 7(3): 294-300
[17]  蒋有绪, 卢俊培. 中国海南岛尖峰岭热带林生态系统[M]. 北京: 科学出版社, 1991:256-283
[18]  Escalona J M, Flexas J, Medrano H. Stomatal and non-stomatal limitations of photosynthesis under water stress in field-growen grapevines[J]. Australian Journal of Plant Physiology, 1999, 16: 421-433
[19]  Bassman J , Zwier J C. Gas exchange characteristics of Populus trichocarpa , Populus deltoids and Populus trichocarpa × P. deltoids clone[J]. Tree Physiology, 1991, 8: 145-159
[20]  Huante P, Rincón E. Responses to light changes in tropical deciduous woody seedlings with contrasting growth rates[J]. Oecologia, 1998, 113: 53-66
[21]  Poorter L, Arets E J M M. Light environment and tree strategies in a Bolivian tropical moist forest: an evaluation of the light partitioning hypothesis[J]. Plant Ecology, 2003, 166: 295-306
[22]  Delagrange S, Messier C, Lechowicz M J, et al. Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability[J]. Tree Physiology, 2004, 24: 775-784
[23]  Duan B, Lu Y, Yin C, et al. Physiological responses to drought and shade in two contrasting Picea asperata populations[J]. Physiologia Plantarum, 2005, 124: 476-484
[24]  Grantz D A, Moore P H, Zeiger E. Stomatal responses to light and humidity in sugarcane: prediction of daily time courses and identification of potential selection criteria[J]. Plant, Cell and Environment, 1987, 10: 197-204
[25]  Valladares F, Pearcy R W. Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia[J]. Plant, Cell and Environment, 1997, 20: 25-36
[26]  Bazzaz F A. The physiological ecology of plant succession[J]. Annual Review of Ecology and Systematics, 1979, 10: 351-371
[27]  Kyereh B, Swaine M D, Thompson J. Effect of light on the germination of forest trees in Ghana[J]. Journal of Ecology, 1999, 87: 772-783
[28]  Niinemets ü. The controversy over traits conferring shade-tolerance in trees: ontogenetic changes revisited[J]. Journal of Ecology, 2006, 94: 464-470
[29]  张教林, 曹坤芳. 不同生态习性热带雨林树种的幼苗对光能的利用和耗散[J]. 应用生态学报, 2004, 15 (3): 372-376
[30]  Lusk C H, Pozo A D. Survival and growth of seedlings of 12 Chilean rainforest trees in two light environments: Gas exchange and biomass distribution correlates[J]. Austral Ecology, 2002, 27: 173-182
[31]  Huc R, Ferhi A, Guehl J M. Pioneer and late stage tropical rainforest tree species (French Guyana) growing under common conditions differ in leaf gas exchange regulation, carbon isotope discrimination and leaf water potential[J]. Oecologia, 1994, 99: 297-305
[32]  Ishida A, Nakano T, Matsumoto Y, et al. Diurnal changes in leaf gas exchange and chlorophyll fluorescence in tropical tree species with contrasting light requirements[J]. Ecological Research, 1999, 14: 77-88
[33]  王博轶, 冯玉龙. 生长环境光强对两种热带雨林树种幼苗光合作用的影响[J]. 生态学报, 2005, 25(1): 23-30

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133