全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

云南河谷构树的遗传多样性研究

, PP. 588-592

Keywords: 构树,天然林,遗传多样性,AFLP标记

Full-Text   Cite this paper   Add to My Lib

Abstract:

以云南省境内金沙江、元江、红河和怒江流域自然分布的构树为试材,采用AFLP分子标记技术对90份构树种质资源进行了遗传多样性分析研究。结果表明:筛选出的7对引物组合共扩增获得786条清晰可辩的条带,其中,多态性带632条,多态性条带百分率达80.4%,平均每对引物组合检测出90.3个多态位点。分布于4条水系流域的构树居群间,金沙江流域构树居群的遗传多样性水平最高,Nei's基因多样性指数为0.145 5,而元江流域构树居群的遗传多样性水平最低,Nei's基因多样性指数为0.112 9。4个构树居群间的遗传分化系数为0.038 6,表明构树的遗传变异主要存在于居群内不同个体之间。在遗传距离为0.003时,4个构树居群可分为2组,第1组由金沙江流域的构树居群构成,第2组包含分布于红河、怒江和元江流域的3个构树居群。

References

[1]  Zerega N J C, Clement W L, Datwyler S L, et al. Biogeography and divergence times in the mulberry family (Moraceae) [J]. Molecular Phylogenetics and Evolution, 2005, 37: 402-416
[2]  浦同省,李 昆,廖声熙.我国长纤维树种构树的研究现状与发展前景[J].现代林业科技,2008(24):19-21
[3]  刘志远,范卫红,沈世华.构树SRAP分子标记[J].林业科学,2009,45(12):54-58
[4]  廖声熙,何承忠,李 昆,等.金沙江干热河谷地区构树的AFLP分析[J].西北植物学报,2007,27(12):2393-2398
[5]  Seelenfreund D, Pi?a R, Ho K Y, et al. Molecular analysis of Broussonetia papyrifera (L.) Vent. (Magnoliophyta: Urticales) from the Pacific, based on ribosomal sequences of nuclear DNA[J]. New Zealand Journal of Botany, 2011, 49(3): 413-420
[6]  Murray M G, Thompson W F. Rapid isolation of high-molecular-weight plant DNA [J]. Nucleic Acids Research, 1980, 8: 4321-4325
[7]  Vos P, Hogers R, Bleeker M, et al. AFLP: A new concept for DNA [J]. Nucleic Acids Research, 1995, 23: 4407-4414
[8]  Tixier M H, Sourdille P, Roder M, et al. Detection of wheat microsatellites using a non radioactive silver-nitrate staining method [J]. Journal of Genetics and Breeding, 1997, 51:175-177
[9]  Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals[J]. Genetics, 1978, 89: 583-590
[10]  Li J, Chen K Y, Li Bosheng. The variation of genetic diversitity of Querus aquifoliodes in different elevations[J]. Acta Botanica Sinica,1998, 40(8): 761-767
[11]  McKeand S E, Eriksson G, Roberds J H. Genotype by environment interaction for index traits that combine growth and wood density in loblolly pine[J]. Theoretical and Applied Genetics, 1997,94(8):1015-1022
[12]  Sykes R, Li B L, Isik F, et al. Genetic variation and genotype by environment interactions of juvenile wood chemical properties in Pinus taeda L. [J]. Annals of forest science, 2006, 63(8):897-904
[13]  Pot D, Chantre G, Rozenberg P, et al. Genetic control of pulp and timber properties in maritime pine (Pinus pinaster Ait.) [J]. Annals of forest science, 2002, 59(5-6):563-575
[14]  Poke F S, Potts B M, Vaillancourt R E, et al. Genetic parameters for lignin, extractives and decay in Eucalyptus globules[J] . Annals of forest science, 2006, 63(8):813-821
[15]  Slatkin M. Gene flow in natural populations[J]. Annu Reu Ecol Syst, 1985, 16: 393-430
[16]  Lenormand T, Guillemaud T, Bourguet D, et al. Evaluating gene flow using selected markers: a case study[J]. Genetics, 1998, 149: 1383-1392
[17]  Whitlock M C, David E M. Indirect measures of gene flow and migration: FST≠1/(4Nm+1)[J]. Heredity, 1999, 82: 117-125
[18]  Wright S. The genetical structure of populations[J]. Annals of Eugenics, 1951, 15: 323-334

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133