全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

杉木人工林林分断面积生长模型的贝叶斯法估计

Keywords: 贝叶斯法 传统法 林分断面积 杉木

Full-Text   Cite this paper   Add to My Lib

Abstract:

以江西杉木人工林为例,以Korf型、Richards型和Hossfeld型3种模型为基础,通过广义代数差分法(GADA)分别建立杉木林分断面积生长模型。结果表明:以Richards型为基础的杉木林分断面积预测精度最高,以Richards型模型为最优模型,分别基于贝叶斯法和传统法(非线性最小二乘法)估计杉木林分断面积生长模型。研究发现,利用贝叶斯法估计杉木林分断面积生长模型,预测精度相当且预测值的可靠性比传统法好

References

[1]  张雄清, 雷渊才, 陈新美, 等. 组合预测法在林分断面积生长预估中的应用[J]. 北京林业大学学报, 2010, 32(4): 6-11.
[2]  杜纪山, 唐守正. 杉木林分断面积生长预估模型及其应用[J]. 北京林业大学学报, 1998, 20(4): 1-5.
[3]  张建国, 孙洪刚. 杉木人工林断面积生长规律及动态模拟[M]. 北京: 科学出版社, 2010: 58-75.
[4]  Li R, Stewart B, Weiskittel A. A Bayesian approach for modelling non-linear longitudinal/hierarchical data with random effects in forestry[J]. Forestry, 2012, 85(1): 17-25.
[5]  Ellison A M. Bayesian inference in ecology[J]. Ecology letters, 2004, 7: 509-520.
[6]  李向阳.水文模型参数优选及不确定性分析方法研究[D]. 大连:大连理工大学, 2005.
[7]  Zhang X, Duan A, Zhang J. Tree biomass estimation of Chinese fir (Cunninghamia lanceolata) based on bayesian method[J]. PLOS ONE, 2013, 8(11): 1-7.
[8]  Green E J, Jr.Roesch FAA, Smith F M, et al. Bayesian estimation for the three-parameter Weibull distribution with tree diameter data[J]. Biometrics, 1994, 50(1): 254-269.
[9]  Bullock B P, Boone E L. Deriving tree diameter distributions using Bayesian model averaging[J]. Forest Ecology and Management, 2007, 242: 127-132.
[10]  Clark J S, Wolosin M, Dietze M, et al. Tree growth inference and prediction from diameter censuses and ring widths[J]. Ecological Applications, 2007, 17(7): 1942-1953.
[11]  Clutter J L, Jones E P. Prediction of growth after thinning in old-field slash pine plantations[R]. USDA Forest Service Research Paper, 1980: 217.
[12]  Anta M B, Dorado F C, Aranda U D, ?et al.? Development of a basal area growth system for maritime pine in northwestern Spain using the generalized algebraic difference approach[J]. Canadian Journal of Forest Research, 2006, 36(6): 1461-1474.
[13]  Lindley D V. Bayesian thoughts[J]. Significance, 2000, 1(2): 73-75.
[14]  茹诗松. 高等数理统计[M]. 北京: 高等教育出版社, 1998.
[15]  Gelman A, Carlin J B, Stern H S. Bayesian Data Analysis, 2nd edn[M]. USA: Chapman and Hall/CRC, 2004.
[16]  Spiegelhalter D J, Thomas A, Best N. WinBUGS User Manual[M]. Cambridge: MRC Biostatistics Unit, 2003.
[17]  Chib S. Greenberg E. Understanding the Metropolis-Hastings algorithm[J]. The American Statistician, 1995, 49(4): 327-335.
[18]  Sturtz S, Ligges U, Gelman A. R2WinBUGS: a package for running WinBUGS from R[J]. Journal of Statistic Software, 2005, 12(3): 1-16.
[19]  Spiegelhalter D J, Best N G, Carlin B P, et al. Bayesian measures of model complexity and fit (with discussion)[J]. Journal of Royal Statistical Society, Series B, 2002, 64: 583-616.
[20]  杜纪山, 唐守正. 林分断面积生长模型研究综述[J]. 林业科学研究, 1997, 10(6): 599-606.
[21]  Bailey R L, Clutter J L. Base-age invariant polymorphic site curves[J]. Forest Science, 1974, 20(2): 155-159.
[22]  Cieszewski C J, Bailey R L. Generalized algebraic difference approach: theory based derivation of dynamic equations with polymorphism and variable asymptotes[J]. Forest Science, 2000, 46(1): 116-126.
[23]  Cieszewski C J. Three methods of deriving advanced dynamic site equations demonstrated on inland Douglas-fir site Curves[J]. Canadian Journal of Forest Research, 2001, 31(1): 165-173.
[24]  Cieszewski C J. Comparing fixed-and variable-base-age site equations having single versus multiple asymptotes[J]. Forest Science, 2002,48(1): 7-23.
[25]  McCarthy M A. Bayesian methods for ecology[M]. Cambridge UK:Cambridge University Press, 2007.
[26]  Clyde M. Model uncertainty and health effect studies for particulate matter[R]. Technical Report Series, NRCSE-TRS No. 027, 1999.
[27]  Davidian M, Giltinan D M. Nonlinear Models for Repeated Measurement Data[M]. New York: Chapman and Hall, 1995.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133