Iida S,Tanaka T,Sugita M.Change of interception process due to the succession from Japanese red pine to evergreen oak[J].Journal of Hydrology,2005,315(1): 154-166.
[8]
Liu J.A theoretical model of the process of rainfall interception in forest canopy[J].Ecological Modelling,1988,42(2):111-123.
Valente F,David J S,Gash J H C. Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models[J].Journal of Hydrology,1997,190(1):141-162.
Herbst M,Rosier P T W,Mcneil D D,et al.Seasonal variability of interception evaporation from the canopy of a mixed deciduous forest[J].Agricultural and Forest Meteorology,2008,148(11):1655-1667.
[13]
Deguchi A,Hattori S,Park H.The influence of seasonal changes in canapy structure on interception loss:Application of the revised Gash model[J].Journal of Hydrology,2006,318(1-4):80-102.
[14]
赵明扬.黄土高原油松人工林水文效应模型研究[D].北京:中国林业科学研究院,2013.
[15]
Shigki M.Application of three canopy interception models to a young stand of Japanese cypress and interpretation in terms of interception mechanism[J].Journal of Hydrology,2007,342(3-4):305-319.
Efron B, Tibshirani R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy[J]. Statistical Science,1986,1(1): 54-75.
[20]
Efron B. Bootstrap methods: another look at the jackknife[J]. The Annals of Statistics, 1979, 7(1):1-26.