全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于灰色时序组合模型的基坑监测预测

DOI: 10.11872/j.issn.1005-2518.2014.05.079, PP. 79-83

Keywords: 变形监测,沉降数据,时间序列模型,灰色模型,深基坑,矿山

Full-Text   Cite this paper   Add to My Lib

Abstract:

基坑监测是确保矿山基坑工程安全实施的必要手段,不同模型所监测到的基坑沉降值存在一定的差异,因而如何选择一种有效的组合模型是准确预测未来某一时刻基坑沉降面临的主要问题。本研究将时间序列预测模型与灰色模型相结合(即灰色时序组合预测模型)应用于某深基坑(基坑深5.7~13.7m)沉降监测数据分析,预测结果准确可靠。同时,与单一模型(如ARIMA和GM(1,1))的预测结果相比,灰色时序组合模型的预测精度更高,所获得的预测结果与实测值最接近,是一种非常有效的基坑预测方法。

References

[1]  黄红军.GM(1,1)模型在高层建筑物沉降监测中的应用[J].山西建筑,2008,34(14):102-103.
[2]  李炳军,何春花,卢秀霞.基于灰色组合模型的河南省粮食产量预测[J].农业系统科学与综合研究,2008,24(4):411-414,419.
[3]  华博深,秦岩宾,徐朝术,等.灰色线性组合模型在基坑监测中的运用[J].测绘,2011,34(4):163-164,180.
[4]  龚国勇.ARIMA模型在深圳GDP预测中的应用[J].数学的实践与认识,2008,38(4):53-57.
[5]  侯建国,王腾军.变形监测理论与应用[M].北京:测绘出版社,2008:175-176.
[6]  新平.灰色系统模型方法的研究[D].武汉:华中科技大学,2002:35-68.
[7]  王琛艳,郑治.人工神经网络在预测高速公路路基沉降中的应用[J].公路交通科技,2000,(4):7-10.
[8]  胡守仁.神经网络导论[M].长沙:国防科技大学出版社,1993:23-45.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133