Wemer G, Strommenger B, Klare I, et al.Molecular detection of linezolid resistance in Enterococcus faecium and Enterococcus faecalis by use of 5’nuclease real-time PCR compared to a modified classical approach [J]. J Clin Microbiol, 2004, 42(11): 5327-5331.
[3]
Xiong L, Kloss P. Oxazolidinone resistance mutations in 23srrna of escherichia coli reveal the central region of domain V as the primary site of drug action [J]. J bacteriol, 2000, 182(19): 5325-5331.
[4]
Allen GP, Bierman BC. In vitro analysis of resistance selection by linezolid in vancomycin-susceptible and -resistant Enterococcus faecalis and Enterococcus faecium [J]. Int J Antimicrob Agents, 2009,34(1):21-24.
[5]
Depaidieu F, Perichon B, Courvalin P. Detection of the van alphabet and ident ification of enterococci and Streptococcus at the species level by multiplex PCR [J]. Clin Microbiol, 2004, 42(12): 5857-5860.
[6]
Lin A H, Murray RW, Vidmar TJ, et al. The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with binding of chloramphenicol and lincomycin [J]. Antimicrob,Agents Che-mother,1997,41:2127-2131.
[7]
Shinabarger DL, Marotti KR, Murray RW, et al. Mechanism of action of oxazolidinones: effects of linezolid and eperezolid on translation reactions [J]. Antimicrob,Agents Chemother,1997,41:2132-2136.
[8]
Swaney SM, Aoki H, Ganoza MC, et al. The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria [J]. Antimicrob,Agents Chemother,1998, 42:3251-3255.
[9]
Long KS, Munck C, Andersen TM, et al. Mutations in 23S rRNA at the peptidyl transferase center and their relationship to linezolid binding and cross-resistance [J]. Antimicrob Agents Chemother,2010, 54:4705-4713.
[10]
Li BB, Wu CM, Wang Y,et al. Single and dual mutations at positions 2058, 2503 and 2504 of 23S rRNA and their relationship to resistance to antibiotics that target the large ribosomal subunit [J]. J Antimicrob Chemother, 2011, 66(9):1983-1986.
[11]
Jalava J, Vaara M, Huovinen P. Mutation at the position 2058 of the 23S rRNA as a cause of macrolide resistance in Streptococcus pyogenes [J]. Ann Clin Microbiol Antimicrob, 2004, 3:5.
[12]
Canu A, Malbruny B, Coquemont M, et al. Diversity of ribosomal mutations conferring resistance to macrolides, clindamycin, streptogramin, and telithromycin in Streptococcus pneumoniae [J]. Antimicrob Agents Chemother,2002,46(1):125-131.
[13]
Schlünzen F, Zarivach R, Harms J, et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria[J]. Nature,2001, 413(6858): 814-821.
[14]
Tu D, Blaha G, Moore PB, et al. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance [J]. Cell, 2005, 121(2):257-270.