Doms RW, Peiper SC. Unwelcomed guests with master keys: how HIV uses chemokine receptors for cellular entry [J]. Virology, 1997, 235(2): 179-190.
[2]
Rana S, Besson G, Cook DG, et al. Role of CCR5 in infection of primary macrophages and lymphocytes by macrophage-tropic strains of human immunodeficiency virus: resistance to patient-derived and prototy peisolates resulting from the delta ccr5 mutation [J]. J Virol, 1997, 71(4): 3219-3227.
[3]
Connor RI, Sheridan KE, Ceradini D, et al. Change in coreceptor use correlates with disease progression in HIV-1-infected individuals [J]. The Journal of experimental medicine, 1997, 185(4): 621-628.
[4]
Karlsson A, Parsmyr K, Sandstrom E, et al. MT-2 cell tropism as prognostic marker for disease progression in human immunodeficiency virus type 1 infection [J]. Journal of clinical microbiology, 1994, 32(2): 364-370.
[5]
Richman DD, Bozzette SA. The impact of the syncytium-inducing phenotype of human immunodeficiency virus on disease progression [J]. The Journal of infectious diseases, 1994, 169(5): 968-974.
[6]
Schuitemaker H, Koot M, Kootstra NA, et al. Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population [J]. J Virol, 1992, 66(3): 1354-1360.
[7]
Tersmette M, Gruters RA, De Wolf F, et al. Evidence for a role of virulent human immunodeficiency virus (HIV) variants in the pathogenesis of acquired immunodeficiency syndrome: studies on sequential HIV isolates [J]. J Virol, 1989, 63(5): 2118-2125.
[8]
Bjorndal A, Deng H, Jansson M, et al. Coreceptor usage of primary human immunodeficiency virus type 1 isolates varies according to biological phenotype [J]. J Virol, 1997, 71(10): 7478-7487.
[9]
Esbjornsson J, Mansson F, Martinez-Arias W, et al. Frequent CXCR4 tropism of HIV-1 subtype A and CRF02_AG during late-stage disease--indication of an evolving epidemic in West Africa [J]. Retrovirology, 2010, 7(23).
[10]
Huang W, Eshleman SH, Toma J, et al. Coreceptor tropism in human immunodeficiency virus type 1 subtype D: high prevalence of CXCR4 tropism and heterogeneous composition of viral populations [J]. J Virol, 2007, 81(15): 7885-7893.
[11]
Singh A, Page T, Moore PL, et al. Functional and genetic analysis of coreceptor usage by dualtropic HIV-1 subtype C isolates [J]. Virology, 2009, 393(1): 56-67.
[12]
Van Rij RP, Visser JA, Van Praag RM, et al. Both R5 and X4 human immunodeficiency virus type 1 variants persist during prolonged therapy with five antiretroviral drugs [J]. J Virol, 2002, 76(6): 3054-3058.
[13]
He X, Xing H, Ruan Y, et al. A comprehensive mapping of HIV-1 genotypes in various risk groups and regions across China based on a nationwide molecular epidemiologic survey [J]. PloS one, 2012, 7(10): e47289.
[14]
Cashin K, Gray LR, Jakobsen MR, et al. CoRSeqV3-C: a novel HIV-1 subtype C specific V3 sequence based coreceptor usage prediction algorithm [J]. Retrovirology, 2013, 10(24).
[15]
Coetzer M, Cilliers T, Ping LH, et al. Genetic characteristics of the V3 region associated with CXCR4 usage in HIV-1 subtype C isolates [J]. Virology, 2006, 356(1-2): 95-105.
[16]
Fouchier RA, Groenink M, Kootstra NA, et al. Phenotype-associated sequence variation in the third variable domain of the human immunodeficiency virus type 1 gp120 molecule [J]. J Virol, 1992, 66(5): 3183-3187.
[17]
Jensen MA, Coetzer M, Van 'T Wout AB, et al. A reliable phenotype predictor for human immunodeficiency virus type 1 subtype C based on envelope V3 sequences [J]. J Virol, 2006, 80(10): 4698-4704.
[18]
Sing T, Low AJ, Beerenwinkel N, et al. Predicting HIV coreceptor usage on the basis of genetic and clinical covariates [J]. Antiviral therapy, 2007, 12(7): 1097-1106.
[19]
Wei X, Decker JM, Wang S, et al. Antibody neutralization and escape by HIV-1 [J]. Nature, 2003, 422(6929): 307-312.
[20]
Su L, Graf M, Zhang Y, et al. Characterization of a virtually full-length human immunodeficiency virus type 1 genome of a prevalent intersubtype (C/B') recombinant strain in China [J]. J Virol, 2000, 74(23): 11367-11376.
[21]
Ma L, Guo Y, Yuan L, et al. Phenotypic and genotypic characterization of human immunodeficiency virus type 1 CRF07_BC strains circulating in the Xinjiang Province of China [J]. Retrovirology, 2009, 6(45).
[22]
Yu X, Yuan L, Huang Y, et al. Susceptibility of HIV-1 subtypes B', CRF07_BC and CRF01_AE that are predominantly circulating in China to HIV-1 entry inhibitors [J]. PloS one, 2011, 6(3): e17605.
[23]
De Jong JJ, De Ronde A, Keulen W, et al. Minimal requirements for the human immunodeficiency virus type 1 V3 domain to support the syncytium-inducing phenotype: analysis by single amino acid substitution [J]. J Virol, 1992, 66(11): 6777-6780.
[24]
De Jong JJ, Goudsmit J, Keulen W, et al. Human immunodeficiency virus type 1 clones chimeric for the envelope V3 domain differ in syncytium formation and replication capacity [J]. J Virol, 1992, 66(2): 757-765.
[25]
Kato K, Sato H, Takebe Y. Role of naturally occurring basic amino acid substitutions in the human immunodeficiency virus type 1 subtype E envelope V3 loop on viral coreceptor usage and cell tropism [J]. J Virol, 1999, 73(7): 5520-5526.
[26]
Rodenburg CM, Li Y, Trask SA, et al. Near full-length clones and reference sequences for subtype C isolates of HIV type 1 from three different continents [J]. AIDS research and human retroviruses, 2001, 17(2): 161-168.