全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

利奈唑胺诱导粪肠球菌耐药50S核糖体蛋白突变位点分析

, PP. 277-280

Keywords: 粪肠球菌,利奈唑胺耐药,50S核糖体蛋白

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的阐明体外诱导利奈唑胺耐药粪肠球菌的核糖体蛋白位点变异特征。方法收集1株血流感染的粪肠球菌利奈唑胺敏感株,通过体外浓度倍增法诱导利奈唑胺耐药;挑取单克隆,经E-test条测定MIC值,获得各菌株的耐药浓度梯度;提取耐药菌株基因组DNA,PCR扩增核糖体蛋白L3和L4(对应rplC和rplD基因),扩增产物经测序后与野生株比较,获得核糖体蛋白及对应氨基酸的突变位点。结果经体外多步法诱导利奈唑胺耐药的不同MIC值粪肠球菌共13株。PCR测序分析2株母株均无变异位点,rplC基因对应的氨基酸位点不尽相同,rplD基因普遍存在T301C位点变异,对应的氨基酸为Phe101Leu。结论体外多步法可诱导粪肠球菌利奈唑胺耐药,耐药机制与核糖体蛋白位点突变密切相关,但仍需进一步研究证实突变位点与耐药的关系。

References

[1]  Meka VG, Gold HS. Antimicrobial resistance to linezolid[J]. Clin Infect Dis, 2004, 39(7): 1010-1015.
[2]  Wemer G, Strommenger B, Klare I, et al.Molecular detection of linezolid resistance in Enterococcus faecium and Enterococcus faecalis by use of 5’nuclease real-time PCR compared to a modified classical approach[J]. J Clin Microbiol, 2004, 42(11): 5327-5331.
[3]  Xiong L, Kloss P. Oxazolidinone resistance mutations in 23srrna of escherichia coli reveal the central region of domain V as the primary site of drug action[J]. J bacteriol, 2000, 182(19): 5325-5331.
[4]  Auckland C, Teare L, Cooke F, et al. Linezolid-resistant enterococci: report of the first isolates in the United Kingdom[J]. J Antimicrob Chemother, 2002, 50(5): 743-746.
[5]  Ager S, Gould K. Clinical update on linezolid in the treatment of Gram-positive bacterial infections[J]. Infect Drug Resist, 2012;5:87-102.
[6]  Long KS, Vester B. Resistance to linezolid caused by modifications at its binding site on the ribosome[J]. Antimicrob Agents Chemother, 2012;56(2):603-612.
[7]  Wang Y, Zhang W, Wang J, et al. Distribution of the multidrug resistance genecfrin Staphylococcus species isolates from swine farms in China[J]. Antimicrob Agents Chemother, 2012, 56:1485-1490.
[8]  Chen H, Wu W, Ni M, et al. Linezolid-resistant clinical isolates of enterococci and Staphylococcus cohnii from a multicentre study in China: molecular epidemiology and resistance mechanisms[J]. Int J Antimicrob Agents, 2013, 42:317-321.
[9]  Ban N, Nissen P, Hansen J, et al. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution[J]. Science, 2000, 289: 905-920.
[10]  Harms J, Schluenzen F, Zarivach R, et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium[J]. Cell, 2001, 107: 679-688.
[11]  Gregory S T, Dahlberg AE. Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23S ribosomal RNA[J]. J Mol Biol, 1999.289: 827-834.
[12]  Roberts MC. Update on macrolide-lincosamide-streptogramin, ke-tolide, and oxazolidinone resistance genes[J]. FEMS Microbiol Lett, 2008,282: 147-159.
[13]  Wittmann HG, Stoffler G, Apirion D, et al. Biochemical and genetic studies on two different types of erythromycin resistant mutants of Escherichia coli with altered ribosomal proteins[J]. Mol Gen Genet, 1973,127: 175-189.
[14]  Farrell DJ, Morrissey I, Bakker S, et al. In vitro activities of telithromycin, linezolid, and quinupristin-dalfo-pristin against Streptococcus pneumoniae with macrolide resistance due to ribosomal mutations[J]. Antimicrob Agents Chemother, 2004,48:3169-3171.
[15]  Gregory ST, Dahlberg AE. Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23S ribosomal RNA[J]. J Mol Biol, 1999, 289: 827-834.
[16]  Prunier AL, Trong HN, Tande D, et al. Mutation of L4 ribosomal protein conferring unusual macrolide resistance in two independent clinical isolates of Staphylococcus aureus[J]. Microb Drug Resist, 2005,11:18-20.
[17]  Gentry DR, Rittenhouse SF, McCloskey L, et al. Stepwise exposure of Staphylococcus aureus to pleuromutilins is associated with stepwise acquisition of mutations in rplC and minimally affects suscep-tibility to retapamulin[J]. Antimicrob Agents Chemother, 2007, 51:2048-2052.
[18]  Miller K, Dunsmore CJ, Fishwick CW, et al. Linezolid and tiamulin cross-resistance in Staphylococcus aureus mediated by point mutations in the peptidyl transferase center[J]. Antimicrob Agents Chemother, 2008, 52:1737-1742
[19]  Pringle M, Poehlsgaard J, Vester B, et al. Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in Brachyspira spp[J]. isolates. Mol Microbiol, 2004, 54:1295-1306.
[20]  Prystowsky J, Siddiqui F, Chosay J, et al. Resistance to linezolid: characterization of mutations in rRNA and comparison oftheir occurrences in vancomycin-resistant enterococci[J]. Antimicrob Agents Chemother, 2001, 45(7):2154-2156.
[21]  Bourgeois-Nicolaos N, Massias L, Couson B, et al. Dose dependence of emergence of resistance to Linezolid in Enterococcus faecalis in vivo[J]. J Infect Dis, 2007, 195(10):1480-1488.
[22]  Depaidieu F, Perichon B, Courvalin P. Detection of the van alphabet and ident ification of enterococci and Streptococcus at the species level by multiplex PCR[J]. Clin Microbiol, 2004, 42(12): 5857-5860.
[23]  Lin AH, Murray RW, Vidmar TJ, et al. The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with binding of chloramphenicol and lincomycin[J]. Antimicrob Agents Chemother, 1997, 41:2127-2131
[24]  Shinabarger DL, Marotti KR, Murray RW, et al. Mechanism of action of oxazolidinones: effects of linezolid and eperezolid on translation reactions[J]. Antimicrob Agents Chemother, 1997, 41:2132-2136.
[25]  Swaney SM, Aoki H, Ganoza MC, et al. The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria[J]. Antimicrob Agents Chemother, 1998, 42:3251-3255.
[26]  Cai JC, Hu YY, Zhang R, et al. Linezolid-resistant clinical isolates of meticillin-resistant coagulase-negative staphylococci and Enterococcus faecium from China[J]. J Med Microbiol, 2012, 61:1568-1573.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133