LEITE E R, MACIEL A P, WEBER I T, et al. Development of metal oxide nanoparticles with high stability against particle growth using a metastable solid solution [J]. Adv Mater, 2002, 14(12): 905–908. [2] WEBER I T, MACIEL A P, LISBOA P N, et al. Effects of synthesis and processing on supersaturated rare earth-doped nanometric SnO2 pow- ders [J]. Nano Lett, 2002, 2(9): 969–973. [3] RUMYANTSEVA M N, KOVALENKO V V, GASKOV A M, et al. Nanocomposites SnO2/Fe2O3: wet chemical synthesis and nanostruc- ture characterization [J]. Sens Actuators B—Chem, 2005, 109(1): 64– 74. [4] VAISHAMPAYAN M V, DESHMUKH R G, WALKE P, et al. Fe-doped SnO2 nanomaterial: A low temperature hydrogen sulfide gas sensor [J]. Mater Chem Phys, 2008, 109(2–3): 230–234. [5] WANG Yuansheng, YANG Yumin, HUANG Zhaoxin. Doping and microstructure of nanocrystalline SnO2 [J]. Chin J Mater Res (in Chi- nese), 1998, 12(5): 531–534. [6] FANG Limei, LI Zhijie, LIU Chunming, et al. Synthesis of Fe3+-modified SnO2 nanoparticles by hydrothermal method [J]. Acta Phys Chim Sin (in Chinese), 2006, 22(10): 1212–1216. [7] CASTRO R H R, PEREIRA G J, GOUVEA D. Surface modification of SnO2 nanoparticles containing Mg or Fe: Effects on sintering [J]. Appl Surf Sci, 2007, 253(10): 4581–4585. [8] JIANG J Z, LIN R, NIELSEN K, et al. Gas sensitive properties and structure of nanostructured (α-Fe2O3)x–(SnO2)1-x materials prepared by mechanical alloying [J]. J Phys D Appl Phys, 1997, 30(10): 1459– 1467. [9] KOVALENKO V V, VAISHAMPAYAN M V, FABRITCHNYI P B, et al. The unusual distribution of the constituents in the (Fe2O3)0.8- (SnO2)0.2 nanocomposite evidenced by 57Fe and 119Sn Mssbauer spec- troscopy [J]. Mendeleev Commun, 2004, 14(4): 140–141. [10] GAO Y, ZHAO H B, ZHAO B Y. Monolayer dispersion of oxide additives on SnO2 and their promoting effects on thermal stability ofSnO2 ultrafine particles [J]. J Mater Sci, 2000, 35(4): 917–923. [11] CASTRO R H R, HIDALGO P, MUCCILLO R, et al. Microstructure and structure of NiO–SnO2 and Fe2O3–SnO2 systems [J]. Appl Surf Sci, 2003, 214(1–4): 172–177. [12] TAYLOR J A, LANCASTER G M, RABALAIS J W. Chemical reactions of N2+ ion beams with group IV elements and their oxides [J]. J Electron Spectrosc, 1978, 13(3): 435–444. [13] KWOKA M, OTTAVIANO L, PASSACANTANDO M, et al. XPS study of the surface chemistry of L-CVD SnO2 thin films after oxida- tion [J]. Thin Solid Films, 2005, 490(1): 36–42. [14] YAN L, PAN J, SONG C K. XPS studies of room temperature magnetic Co-doped SnO2 deposited on Si [J]. Mater Sci Eng B Solid, 2006, 128(1–3): 34–36. [15] MA Xiaocui, YAN Dawei, WU Jun, et al. Properties and formation of interface transition layer for SnO2/Fe2O3 films prepared by plasma CVD [J]. Chin J Semiconduct (in Chinese), 1993, 14(6): 361–367. [16] LI Jianjun, ZHANG Xingtang, CHEN Yanhui, et al. Synthesis of highly ordered SnO2/Fe2O3 composite nanowire arrays by electropho- retic deposition method [J](Eng). Chin Sci Bull (in Chinese), 2005, 50(9): 865–868. [17] CARRENO N L V, MACIEL A P, LEITE E R, et al, The influence of cation segregation on the methanol decomposition on nanostructured SnO2 [J]. Sensor Actuat B Chem, 2002, 86(2/3): 185–192. [18] MACIEL A P, LISBOA P N, LEITE E R, et al, Microstructural and morphological analysis of pure and Ce-doped tin dioxide nanoparticles [J]. J Eur Ceram Soc, 2003, 23(5): 707–713.