LIU L, SUN W, CHEN H S, et al. Prediction of effective diffusion coefficient of concrete based on multiscale approach [C]//KOVLER K ed. Concrete Durability and Service Life Planning – ConcreteLife’09. Bagneux, France: RILEM publications SARL, 2009: 423–431. [2] ZHENG J, ZHOU X. Analytical solution for the chloride diffusivity of hardened cement paste [J]. J Mater Civ Eng, 2008, 20(5): 384–391. [3] EUROPEAN UNION, DuraCrete probabilistic performance based durability design of concrete structures [R]. BE95–1347/R17, 2000: 44. [4] BOCKRIS J O M, REDDY A K N. Modern Electrochemistry. Vol.1 Ionics [M]. New York: Plenum, 2002. [5] CRANK J. The Mathematics of Diffusion [M]. 2nd Ed, Oxford: Clar-endon, 1975: 4. [6] NAKASHIMA Y, KAMIYA S. Mathermatica programs for the analysis of three-dimensional pore connectivity and anisotropic tortuosity of porous rocks using X-ray computed tomography image date [J]. J Nucl Sci Techol, 2007, 44(9): 1233–1247. [7] TUMIDAJSKI P J, SCHUMACHER A S, PERRON S, et al. On the relationship between porosity and electrical resistivity in cementitious systems [J]. Cem Concr Res, 1996, 26(4): 539–544. [8] PROMENTILLA M A B, SUGIYAMA T, HITOMI T, et al. Quan- tification of tortuosity in hardened cement pastes using synchrotron- based X-ray computed microtomography [J]. Cem Concr Res, 2009, 39(6): 548–557. [9] TRTIK P, MUNCH B, LURA P. A critical examination of statistical nanoindentation on model materials and hardened cement pastes based on virtual experiments [J]. Cem Concr Compos, 2009, 31(10): 705– 714. [10] van BREUGEL K. Simulation of hydration and formation of structure in hardening cement-based materials [D]. Delft: Delft University of Technology, 1991. [11] CHEN H S, STROEVEN P, YE G, et al. Influence of boundary condi-tions on pore percolation in model cement paste [J]. Key Eng Mater, 2006, 302–303: 486–492. [12] YE G, VAN BREUGEL K, FRAAIJ A L. Three-dimensional microstructure analysis of numerically simulated cementitious materials [J]. Cem Concr Res, 2003, 33(2): 215–222. [13] GHONIEM A F, SHERMAN F S. Grid-free simulation of diffusion using random walk methods [J]. J Comput phys, 1985, 61(1): 1–37. [14] VAMOS C, SUCIU N, VEREECKEN H. Generalized random walk algorithm for the numerical modeling of complex diffusion process [J]. J Comput Phys, 2003, 186(2): 527–544. [15] BENTZ D P, DETWILER R J, GARBOCZI E J, et al. Multi-scale modelling of the diffusivity of mortar and concrete [C]//NILSSON L O, OLLIVIER J P, eds., Proceedings of Chloride Penetration into Con-crete, Saint-Rémy-lès-Chevreuse, France: RILEM publications SARL, 1997: 85–94. [16] MADRAS N, SLADE G. The Self-Avoiding Walk [M]. Boston: Birk-hauser, 1996. [17] TANG L, NILSSON L-O. Rapid determination of the chloride diffusi- vity in concrete by applying an electrical field [J]. ACI Mater J, 1992, 89(1): 49–53. [18] NGALA V T, PAGE C L, PARROTT L J, et al. Diffusion in cementi- tious materials: II, further investigations of chloride and oxygen diffu-sion in well-cured OPC and OPC/30%PFA pastes [J]. Cem Concr Res, 1995, 25(4): 819–826. [19] PAGE C L, SHORT N R, TARRAS A El. Diffusion of chloride ions in hardened cement pastes [J]. Cem Concr Res, 1981, 11(3): 395–406. [20] LIDE D. CRC Handbook of Chemistry and Physics [M]. 89st ed, Washington DC: CRC Press, 2008. [21] GITMAN I M, ASKES H, SLUYS L J. Representative volume: exis-tence and size determination [J]. Eng Fract Mech, 2007, 74(16): 2518– 2534. [22] NIST/SEMATECH. e-Handbook of Statistical Methods. http:// www. itl.nist.gov/div898/handbook/, 2010. [23] YU S W, PAGE C L. Diffusion in cementitous materials: 1. compa- rative study of chloride and oxygen diffusion in hydrated cement pastes [J]. Cem Concr Res, 1991, 21(4): 581–588.