全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

坡缕石黏土吸附Cu2+的动力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过提纯的坡缕石黏土对水溶液中Cu2+的静态吸附实验,考察了吸附过程的动力学特征,研究了吸附过程的动力学模型、表观活化能和活化热力学参数,并对吸附速率的控制进行了分析。结果表明在实验条件下坡缕石黏土对水中的Cu2+具有较快的吸附速率,60min可基本达到平衡;吸附过程能较好地符合Lagergrenpseudo-second-order吸附动力学方程,速率常数k2随温度的升高而增大,随Cu2+初始浓度的增加而减小;吸附过程的表观活化能为18.82kJ/mol,是活化的化学吸附,活化焓为16.26kJ/mol,活化Gibbs自由能为75.40~79.38kJ/mol,活化熵为–198.50J/(mol·K),活化为吸热过程,是缔合反应机制;吸附速率由液膜扩散和颗粒内扩散共同控制,低浓度时主要受液膜扩散控制,高浓度时颗粒内扩散的影响更为明显。

References

[1]  MURRAY H H. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview [J]. Appl Clay Sci, 2000, 17(5/6): 207–221. [2] 庆承松, 宋浩, 陈天虎, 等. 凹凸棒石/γ-Fe2O3/C纳米材料的制备与表征[J]. 硅酸盐学报, 2009, 37(4): 548–553. QING Chengsong, SONG Hao, CHEN Tianhu, et al. J Chin Ceram Soc (in Chinese), 2009, 37(4): 548–553. [3] AL-FUTAISI A, JAMRAH A, AL-HANAI R. Aspects of cationic dye molecule adsorption to palygorskite [J]. Desalination, 2007, 214(1/2/3): 327–342. [4] SHARIATMADARI H, MERMUT A R, BENKE M B. Sorption of selected cationic and neutral organic molecules on palygorskite and se-piolite [J]. Clays Clay Miner, 1999, 47(1): 44–53. [5] CHANG P H, LI Z, YU T L, et al. Sorptive removal of tetracycline from water by palygorskite [J]. J Hazard Mater, 2009, 165(1/2/3): 148– 155. [6] ALVAREZ-AYUSO E, GARCIA-SANCHEZ A. Palygorskite as a feasi-ble amendment to stabilize heavy metal polluted soils [J]. Environ Pollut, 2003, 125(3): 337–344. [7] POTGIETER J H, POTGIETER-VERMAAK S S, KALIBANTONGA P D. Heavy metals removal from solution by palygorskite clay [J]. Miner Eng, 2006, 19(5): 463–470. [8] ALVAREZ-AYUSO E, GARCIA-SANCHEZ A. Removal of cadmium from aqueous solutions by palygorskite [J]. J Hazard Mater, 2007, 147(1/2): 594–600. [9] 郝艳玲, 范福海. Cd2+在甘肃靖远坡缕石粘土上的吸附作用研究[J]. 岩石矿物学杂志, 2008, 27(6): 567–571. HAO Yanling, FAN Fuhai. Acta Petrologica Et Mineralogica (in Chi-nese), 2008, 27(6): 567–571. [10] 国家环保总局. 水和废水监测分析方法(第四版)[M]. 北京: 中国环境科学出版社, 2002: 324–326. State Environmental Protection Administration. Monitoring and Analysis Methods of Water and Waste Water (in Chinese). 4th ed. Beijing: Chinese Environmental Sciences Press, 2002: 324–326. [11] HO Y S, MCKAY G. Pseudo-second order model for sorption processes [J]. Process Biochem, 1999, 34(5): 451–465. [12] PEERS A M. Elovich adsorption kinetics and the heterogeneous surface [J]. J Catal, 1965, 4(4): 499–503. [13] CHANG M Y, JUANG R S. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay [J]. J Colloid Interface Sci, 2004, 278(1): 18–25. [14] 丁世敏, 封享华, 汪玉庭, 等. 交联壳聚糖多孔微球对染料的吸附平衡及吸附动力学分析[J]. 分析科学学报, 2005, 21(2): 127–130. DING Shimin, FENG Xianghua, WANG Yuting, et al. J Anal Sci (in Chinese), 2005, 21(2): 127–130. [15] HO Y S. Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and non-linear methods [J]. Water Res, 2006, 40(1): 119–125. [16] 冯素萍, 沈永, 裘娜. 腐殖酸对汞的吸附特性与动力学研究[J]. 离子交换与吸附, 2009, 25(2): 121–129. FENG Suping, SHEN Yong, QIU Na. Ion Exchange and Adsorption (in Chinese), 2009, 25(2): 121–129. [17] ZOU Weihua, HAN Runping, CHEN Zongzhang, et al. Kinetic study of adsorption of Cu(Ⅱ) and Pb(Ⅱ) from aqueous solutions using manganese oxide coated zeolite in batch mode [J]. Colloid Surf A, 2006, 279(1/2/3): 238–246. [18] 李学垣. 土壤化学[M]. 北京: 高等教育出版社, 2001: 280–315. LI Xueyuan. Soil Chemistry (in Chinese). Beijing: Higher Education Press, 2001: 280–315. [19] SCHECKEL K G, SPARKS D L. Temperature effects on Nickel sorp-tion kinetics at the mineral-water interface [J]. Soil Sci Soc Am J, 2001, 65(3): 719–728. [20] GUPTA S S, BHATTACHARYYA K G. Adsorption of Ni(Ⅱ) on clays [J]. J Colloid Interf Sci, 2006, 295(1): 21–32. [21] QADEER R. Adsorption behavior of ruthenium ions on activated charcoal from nirtic acid medium [J]. Colloid Surf A, 2007, 293(1/2/3): 217–223.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133