全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

光学碱度与铋离子掺杂锗酸盐玻璃近红外发光性质之间的关系

Full-Text   Cite this paper   Add to My Lib

Abstract:

制备了铋离子掺杂的碱金属和碱土金属锗酸盐玻璃,并研究了玻璃光学碱度与铋离子近红外发光性质之间的关系。结果表明铋离子的宽带近红外发光的强度、峰位以及荧光半高宽可以通过锗酸盐玻璃的光学碱度进行调控;随着玻璃光学碱度的增加,红外发光强度下降,半高宽增大,同时发光峰红移;玻璃中Bi3+/Bi2+的摩尔比变化趋势与Duffy光学碱度理论相符。而铋离子近红外发光强度与光学碱度的依存关系表明,近红外宽带发光可能源于低价态铋离子。

References

[1]  PENG M, WU B, DA N, et al. Bismuth-activated luminescent materials for broadband optical amplifier in WDM system [J]. J Non-Cryst Solids, 2008, 354(12/13): 1221–1225. [2] ZHARIKOV E V, SMIRNOV A V. Wide-Gap. Luminescent Materials: Theory and Applications [M]. Kluwer Academic Publishers, Boston, 1997: 13–20. [3] ZHOU D C, SONG Z G., CHI G W, et al. NIR broadband luminescence and energy transfer in Er3+–Tm3+-co-doped tellurite glasses [J]. J Al-loys Compd, 2009, 481(1/2): 881–884. [4] FUJIMOTO Y, NAKATSUKA M. Optical amplification in bismuth- doped silica glass [J]. Appl Phys Lett, 2003, 82 (19): 3325–3326. [5] FUJIMOTO Y, NAKATSUKA M. Infrared Luminescence from Bismuth- Doped Silica Glass [J]. Jpn J Appl Phys, 2001, 40(3B): 279– 281. [6] ZHOU S F, JIAN N, QIU J R. Multifunctional bismuth-doped nanopor-ous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers [J]. Adv Funct Mater, 2008, 18(9): 1407–1413. [7] SOKOLOV V O, PLOTNICHENKO V G, DIANOV E M. Origin of broadband near-infrared luminescence in bismuth-doped glasses [J]. Opt Lett, 2008, 33(13): 1488–1490. [8] DUFFY A J, INGRAM D M. An interpretation of glass chemistry in terms of the optical basicity concept [J]. J Non-Cryst Solids, 1976, 21: 373–410. [9] DUFFY A J, INGRAM D M. Establishment of an optical scale for Lewis basicity in inorganic oxyacids melten salts and glasses [J]. J Am Chem Soc, 1971, 93: 6448–6454. [10] FOCKELE M, AHLERS J F, LOHSE F. Optical properties of atomic thallium centers in alkali halides [J]. J Phys C: Solid State Phys, 1985, 18: 1963–1974. [11] BAUCKE K G F, DUFFY A J. The effect of basicity on redox equilib-ria in molten glasses [J]. Phys Chem Glass, 1991, 32: 211–218. [12] CHI G W, ZHOU D C, SONG Z G, et al. Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal ger-manate glasses [J]. Opt Mater, 2009, 31(6): 945–948 [13] DIMITROV V J. Classification of simple oxides: a polarizability approach [J]. Solid State Chem, 2002, 163(1): 100–112. [14] HOPPE U, KRANOLD R, WEBER H J, et al. The change of the Ge-O coordination number in potassium germanate glasses probed by neutron diffraction with high real-space resolution [J]. J Non-Cryst Solids, 1999, 248(1): 1–10. [15] YIANNOPOULOS Y D, VARSAMIS C P E, KAMITSOS E I. Density of alkali germanate glasses related to structure [J]. J Non-Cryst Solids, 2001, 293: 244–249. [16] HUANG W C, JAIN H, MEITZNER G. The structure of potassium germanate glasses by EXAFS [J]. J Non-Cryst Solids, 1996, 196: 155– 161. [17] HENDERSON G S, AMOS R T. The structure of alkali germanophos-phate glasses by Raman spectroscopy [J]. J Non-Cryst Solids, 2003, 328(1–3): 1–19. [18] SANZ O, HARO-PONIATOWSKI E, GONZALO J, et al. Influence of the melting conditions of heavy metal oxide glasses containing bismuth oxide on their optical absorption [J]. J Non-Cryst Solids, 2006, 352(8): 761–768. [19] FADLALLA H M H, TANG C C. YAG:Ce3+ nano-sized particles pre-pared by precipitation technique [J]. Mater Chem Phys, 2009, 114(1): 99–105. [20] MOULDER J F, STICKLE W F, SOBOL P E, et al. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data [M]. Perkin Elmer Corporation, 1992: 252–252 [21] SHESTAKOV O, BREIDOHR R, DEMES H, et al. Electronic states and spectra of BiO [J]. J Mol Spectrosc, 1998, 190(1): 28–77. [22] COHEN E A, GOODRIDGE D M, KAWAGUCHI K, et al. The rota- tional spectrum of BiO radical in its X–1(2)Pi(1/2) and X–2(2)Pi(3/2) states [J]. J Mol Spectrosc, 2006, 239(1): 16 –23.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133