JACKSON S D, SABELLA A, LANCASTER D G. Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm [J]. IEEE J Sel Top Quantum Elect, 2007, 13(3): 567-572. [2] GODARD A. Infrared (2-12 μm) solid-state laser sources: a review [C]//Conference on Parametric Light Sources for the Infrared, Clamart, France, 2007: 1100-1128. [3] JACKSON S D. The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fiber lasers operating in the shortwave infrared [J]. Laser Photon Rev, 2009, 3(5): 466-482. [4] ZHANG Z, SHEN D Y, BOYLAND A J, et al. High-power Tm-doped fiber distributed-feedback laser at 1 943 nm [J]. Opt Lett, 2008, 33(18): 2059-2061. [5] JACKSON S D, SABELLA A, LANCASTER D G. Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm [J]. IEEE J Sel Top Quantum Elect, 2007, 13(3): 567-572. [6] YI Lixia, WANG Meng, FENG Suya, et al. Emissions properties of Ho3+:5I7→5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphate glasses [J]. Opt Mater, 2009, 31(11): 1586-1590. [7] EVANS C A, IKONIC Z, RICHARDS B, et al. Numerical Rate Equation Modeling of a similar to 2.1 μm Tm3+/Ho3+ Co-Doped Tellurite Fiber Laser [J]. J Lightwave Technol, 2009, 27(19): 4280-4288. [8] BARNES N P, WALSH B M, REICHLE D J, et al. Tm : germanate fiber laser: tuning and Q-switching [J]. Appl Phys B-Lasers Opt, 2007, 89(2/3): 299-304. [9] WANG Q, GENG J, LUO T, et al. Mode-locked 2 μm laser with highly thulium-doped silicate fiber [J]. Opt Lett, 2009, 34(23): 3616-3618. [10] GENG J H, WANG Q, LUO T, et al. Single-frequency narrow- linewidth Tm-doped fiber laser using silicate glass fiber [J]. Opt Lett, 2009, 34(22): 3493-3495. [11] PENG Bo, IZUMITANI T. Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near- infrared laser glasses, sensitized by Yb3+ [J]. Opt Mater, 1995, 4(6): 797-810. [12] MCCUMBER D E. Theory of phonon-terminated optical masers [J]. Phys Rev, 1964, 134(2A): A299. [13] JUDD B R. Optical absorption intensities of rare-earth ions [J]. Phys Rev, 1962, 127(3): 750. [14] OFELT G S. Intensities of Crystal Spectra of Rare-Earth Ions [J]. J Chem Phys, 1962, 37(3): 511-520. [15] MIYAKAWA T, DEXTER D L. Phonon sidebands, multi phonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids [J]. Phys Rev B, 1970, 1(7): 2961. [16] WANG M, YI L, CHEN Y, et al. Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2 μm application [J]. Mater Chem Phys, 2009, 114(1): 295-299. [17] DOUALAN J L, GIRARD S, HAQUIN H, et al. Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm [J]. Opt Mater, 2003, 24(3): 563-574. [18] BALDA R, LACHA L M, FERNáNDEZ J, et al., Optical spectroscopy of Tm3+ ions in GeO2-PbO-Nb2O5 glasses [J]. Opt Mater, 2005, 27(11): 1771-1775. [19] REISFELD R, ECKSTEIN Y. Dependence of spontaneous emission and nonradiative relaxations of Tm3+ and Er3+ on glass host and temperature [J]. J Chem Phys. 1975, 63(9): 4001-4012. [20] TANABE S, TAMAOKA T, HANADA T, et al. Spectral properties of Tm3+-doped glasses for S-band amplifier [J]. Opt Amplifiers and Their Applications, 2001, 60: 36-38. [21] LI Kefeng, ZHANG Qiang, BAI Gongxun, et al. Energy transfer and 1.8 μm emission in Tm3+/Yb3+ codoped lanthanum tungsten tellurite glasses [J]. J Alloy Compd, 2010, 504(2): 573-588.