STEELE B C H. Fuel-cell technology: running on natural gas [J]. Nature, 1999, 400: 619-621. [2] MINH N Q. Ceramic fuel cells [J]. J Am Ceram Soc, 1993, 76: 563- 588. [3] WANG J H, LIU M. Computational study of sulfur-nickel interactions: a new S-Ni phase diagram [J]. Electrochem Commun, 2007, 9: 2212. [4] MATSUZAKI Y, YASUDA I. The poisoning effect of sulfur-containing impurity gas on a SOFC anode: part I dependence on temperature, time and impurity concentration [J]. Solid State Ionics, 2000, 132: 261-269. [5] MOOS R, HARDTL K H. Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1 000 and 1 400 ℃[J]. J Am Ceram Soc, 1997, 80: 2549-2562. [6] GONG M, LIU X, TREMBLY J, et al. Sulfur-tolerant anode materials for solid oxide fuel cell application [J]. J Power Sources, 2007, 168: 289-298. [7] HUI S, PETRIC A. Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells [J]. J Eur Ceram Soc, 2002, 22: 1673-1681. [8] LI X, ZHAO H, GAO F, et al. La and Sc co-doped SrTiO3 as novel anode materials for solid oxide fuel cells [J]. Electrochem Commun, 2008, 10: 1567-1570. [9] MARINA OA, CANFIELD N L, STEVENSON J W. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate [J]. Solid State Ionics, 2002, 149: 21-28. [10] ZHANG K, RAN R, Ge L, et al. Systematic investigation on new SrCo1-yNbyO3-δ ceramic membranes with high oxygen semi-permea- bility [J]. Membrane Sci, 2008, 323: 436-443. [11] GELLINGS P J, BOUWMEESTER H J M. Solid state aspects of oxidation catalysis [J]. Catal Today, 2000, 58: 1-53. [12] RAMADASS N. ABO3-type oxides-their structure and properties-a bird's eye view [J]. Mater Sci Eng, 1978, 36: 231-239. [13] LI C, SOH K C K, WU P. Formability of ABO3 perovskites [J]. J Alloys Compd, 2004, 372: 40-48. [14] YAMANAKA S, KUROSAKI K, MAEKAWA T. Thermochemical and thermophysical properties of alkaline-earth perovskites [J]. J Nuclear Mater, 2005, 344: 61-66.