WANG F, LIU X. Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles [J]. J Am Chem Soc, 2008, 130: 5642-5643. [2] ZENG J H, SU J, LI Z H, et al. Synthesis and upconversion luminescence of hexagonal-phase NaYF4 phosphors of controlled size and morphology [J]. Adv Mater, 2005, 17: 2119-2123. [3] PATRA A, SAHA S, ALENCAR M A R C, et al. Blue upconversion emission of Tm3+-Yb3+ in ZrO2 nanocrystals: role of Yb3+ ions [J]. Chem Phys Lett, 2005, 407: 477-481. [4] ZHANG X, LIU X, JOUART J P, et al. Upconversion fluorescence of Ho3+ ions in a BaF2 crystal [J]. Chem Phys Lett, 1998, 287: 659-662. [5] LIANG L F,WU F, HU H L, et al. Enhanced blue and green upconversion in hydrothermally synthesized hexagonal NaYF4 [J]. Chem Inform, 2004, 35: 1522-1528. [6] WANG J, MA T, ZHANG G, et al. Preparation of novel nanometer TiO2 catalyst doped with upconversion luminescence agent and investigation on degradation of acid red B dye using visible light [J]. Catal Commun, 2007, 8: 607-611. [7] TERO SOUKKA T R K K. Photon upconversion in homogeneous fluorescence-based bioanalytical assays [J]. Ann N Y Acad Sci, 2008, 1130: 188-200. [8] RUFAIHAH A J, ZHANG Y. Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals [J]. Biomaterials, 2008, 29: 4122-4128. [9] WANG M, LIU J L, ZHANG Y X, et al. Two-phase solvothermal synthesis of rare-earth doped NaYF4 upconversion fluorescent nanocrystals [J]. Mater Lett, 2009, 63: 325-327. [10] WANG X, KONG X G, YU Y, et al. Effect of annealing on upconversion luminescence of ZnO:Er3+ nanocrystals and high thermal sensitivity [J]. J Phys Chem C, 2007, 111: 15119-15124. [11] WEI Y, LU F, ZHANG X, et al. Synthesis and characterization of efficient near-infrared upconversion Yb and Tm codoped NaYF4 nanocrystal reporter [J]. J Alloys Compd, 2007, 427: 333-340. [12] VETRONE F, BOYER J C, CAPOBIANCO J A. NIR to visible upconversion in nanocrystalline and Bulk Lu2O3:Er3+ [J]. J Phys Chem B, 2002, 106: 5622-5628. [13] VETRONE F, BOYER J C, CAPOBIANCO J A, et al. Concentration-dependent near-infrared to visible upconversion in nanocrystalline and bulk Y2O3:Er3+ [J]. Chem Mater, 2003, 15: 2737-2743. [14] CAPOBIANCO J A, BOYER J C, VETRONE F, et al. Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3 [J]. Chem Mater, 2002, 14: 2915-2921. [15] VETRONE F, BOYER J C, CAPOBIANCO J A, et al. Effect of Yb3+ codoping on the upconversion emission in nanocrystalline Y2O3:Er3+ [J]. J Phys Chem B, 2003, 107: 1107-1112. [16] CHEN G, LIU H, LIANG H, et al. Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions [J]. J Phys Chem C, 2008, 112: 12030-12036. [17] AUZEL F. Upconversion and anti-stokes processes with F and D ions in solids [J]. Chem Rev, 2004, 104: 139-174. [18] SOMMERDIJK J L. Influence of host lattice on the infrared-excited visible luminescence in Yb3+, Er3+ doped fluorides [J]. J Lumin, 1973, 6: 61-67. [19] HUANG Q M,YU J C, MA E, et al. Synthesis and characterization of highly efficient near-infrared upconversion Sc3+/Er3+/Yb3+ tridoped NaYF4 [J]. J Phys Chem C, 2010, 114: 4719-4724. [20] HUANG T, HSIEH W. Er-Yb codoped ferroelectrics for controlling visible upconversion emissions [J]. J Fluores, 2009, 19: 511-516. [21] KRAMER K W, BINER D, FREI G, et al. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors [J]. Chem Mater, 2004, 16: 1244-1251. [22] HUANG Q. Synthesis and analysis of Tm3+ doped YF3 upconversion luminescent nano-materials [J]. J Struct Chem, 2010, 07, 993-1000. [23] EDDY K, EVA M, SEVICK M. Fluorescence lifetime spectroscopy in multiply scattering media with dyes exhibiting multiexponential decay kinetics [J]. J Biophysical, 2002, 83: 1165-1176. [24] INOKUTI M, HIRAYAMA F. Influence of energy transfer by the exchange mechanism on donor luminescence [J]. J Chem Phys, 1965, 43: 1978-1985.