? LI Danhong, LIN Shiwei, LI Shipu, et al. Effects of geometric and crystal structures on the photoelectrical properties of highly ordered TiO2 nanotube arrays [J]. J Mater Res, 2012, 38(27): 1029–1036.
LIAO Jianjun, LI ShiPu, CAO Xiankun. Review on photocatalytic activity of highly ordered TiO2 nanotube arrays [J]. Chem Eng Progr (in Chinese), 2011(09): 2003–2012.
[4]
? OHNO T, TOKIEDA K, HIGASHIDA S, et al. Synergism between ruble and anatase TiO2 particles in photocatalytic oxidation of naphthalene [J]. Appl Catal A, 2003, 244(2): 383–391.
WEN Yanyuan. Preparation, characterization and visible light-activated photocatalytic properties of a series of titanium dioxide-based composited photocatalysts (in Chinese, dissertation). East China Normal University, 2011.
[7]
? TACHIBANA Y, HAQUE S A, DURRANT J R, et al. Modulation of the rate of electron injection in dye-sensitized nanocrystalline TiO2 films by externally applied bias [J]. J Phys Chem B, 2001, 105(31): 7424–7431.
[8]
? NIITSOO O, SARKAR S K, PEJOUX C, et al. Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells [J]. J Photochem Photobiol A: Chem, 2006, 181(2): 306–313.
[9]
? 吴辉煌. 电化学[M]. 北京: 化学工业出版社, 2004.
[10]
? JEON T H, CHOI W Y, PARK H W. Photoelectrochemical and photocatalytic behaviors of hematite-decorated titania nanotube arrays: energy level mismatch versus surface specific reactivity [J]. J Phys Chem C, 2011, 115(14): 7134–7142.
[11]
? GAO Xianfeng, LI Hongbo, SUN Wentao, et al. CdTe quantum dots-sensitized TiO2 nanotube array photoelectrodes [J]. J Phys Chem C, 2009, 113(18): 7531–7535.
[12]
? RATANATNWANATE C, XIONG Chunrong, BALKUS K J, et al. Fabrication of PbS quanum dot doped TiO2 nanotubes [J]. Nano Lett, 2008, 2(8): 682–1688.
[13]
? WANG Ning, LI Xinyong, WANG Yuxin, et al. Synthesis of ZnO/TiO2 nanotube composite film by a two-step route [J]. Mater Lett, 2008, 62(21): 3691–3693.
[14]
? SMITH Y R, SUBRAMANIAN V R. Heterostructural composites of TiO2 mesh TiO2 nanoparticles photosensitized with CdS: a new flexible photoanode for solar cells [J]. J Phys Chem C, 2011, 115(16): 8376–8385.
[15]
? DIGUNA L J, SHEN Q, KOBAYASHI J, et al. High efficiency of CdSe quantum-dot-sensitized TiO2 Inverse opal solar cells [J]. Appl Phys Lett, 2007, 91(2): 023116.
[16]
? CHEN Chong, XIE Yi, ALI G F, et al. Improved conversion efficiency of Ag2S quantum dot-sensitized solar cells based on TiO2 nanotubes with a ZnO recombination barrier layer [J]. Nanoscale Res Lett, 2011, 6(1): 462.
[17]
? SUN Wentao, YU Yuan, PAN Huayong, et al. CdS Quantum dots sensitized TiO2 nanotube-array photoelectrodes [J]. J Am Chem Soc, 2008, 130(4): 1124–1125.
[18]
? KONGKANAND A, TVRDY K, TAKECHI K, et al. Quantum dot solar cells: tuning photoresponse through size and shape control of CdSe-TiO2 architecture [J]. J Am Chem Soc, 2008, 130(12): 4007– 4015.
[19]
? KESSELMAN J M, WERES O, LEWIS N S, et al. Electrochemical production of hydroxyl radical at polycrystalline Nb-doped TiO2 electrodes and estimation of the partitioning between hydroxyl radical and direct hole oxidation pathways [J]. J Phys Chem B, 1997, 101(14): 2637– 2643.
[20]
? WANG Jun, LIN Zhiqun. Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineerin [J]. Chem Mater, 2010, 22(2): 579–584.
[21]
? ADACHI M, MURATA Y, OKADA I, et al. Formation of titania nanotubes and applications for dye-sensitized solar cells [J]. J Electrochem Soc, 2003, 150: 488–493.
[22]
? NOZIK A J. Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion [J]. Inorg Chem, 2005, 44(20): 6893–6899.
[23]
? SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells [J]. J Appl Phys, 1961, 32(3): 510–520.
[24]
? NOZIK A J. Quantum dot solar cells [J]. Physica E, 2002, 14: 115–120.
SONG Xing. Quantum dot sensitized solar cell: preparation and improvement of the power conversion efficiency (in Chinese, dissertation). Tianjin: Tianjin University, 2010.
[27]
? ABD-LEFDIL S, MESSADULI C, SAYAH D, et al. Temperature growth and annealing effects on CdS thin films prepared by chemical bath deposition process [J]. Phys Stat Sol A, 1998, 168(2): 417–423.
[28]
? LIN S C, LEE Y L, YANG Y M, et al. Quantum-dot- sensitized solar cells: Assembly of CdS–quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition [J]. Appl Phys Lett, 2007, 90(14): 143517–143520.
[29]
? XIE Y, ALI G, YOO S H, et al. Sonication-assisted synthesis of CdS quantum-dot-sensitized TiO2 Nanotube arrays with enhanced photoelectrochemical and photocatalytic activity [J]. ACS Appl Mater Int, 2010(10): 2910–2914.
[30]
? BAKER D R, KAMAT P V. Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures [J]. Adv Funct Mater, 2009, 79(5): 805–811.
[31]
? YIN Yuxin, JIN Zhengguo, HOU Feng. Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO2 nanotube arrays [J]. Nanotechnology, 2007, 18(49): 495608.
[32]
? YANG Lixia, CHEN Beibei, LUO Shenglian, et al. Sensitive detection of polycyclic aromatic hydrocarbons using CdTe quantum dot-modified TiO2 nanotube array through fluorescence resonance energy transfer [J]. Environ Sci Technol, 2010, 44(20): 7884–7889.
[33]
? BANERJEE S, MOHAPATRA S K, DAS P P, et al. Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS [J]. Chem Mater, 2008, 20(21): 6784–6791.
[34]
? SHEN Y J, LEE Y L. Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot sensitized solar cell applications [J]. Nanotechnolopy, 2008, 19(4): 45602–45608.
[35]
? ROBEL L, SUBRAMANIAN V, KUNO M. et al. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films [J]. J Am Chem Soc, 2006, 128(7): 2385–2393.
[36]
? KIM J C, CHOI J, LEE Y B. et al. Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nano-particles [J]. Chem Commun, 2006(48): 5024–5026.
[37]
? ZHANG Yaojun, YAN Wei, WU Yanpei, et al. Synthesis of TiO2 nanotubes coupled with CdS nanoparticles and production of hydrogen by photocatalytic water decomposition [J]. Mater Lett, 2008, 62(23): 3846–3848.
[38]
? ZHU Juhong, YANG Dong, GENG Jianqing, et al. Synthesis and characterization of bamboo-like CdS/TiO2 nanotubes composites with enhanced visible-light photocatalytic activity [J]. J Nanopart Res, 2008, 10(5): 729–736.
[39]
? LI Hong, ZHU Baolin, FENG Yunfeng, et al. Preparation of TiO2/ZnS core/sheath heterostructure nanotubes via a wet chemical method and their photocatalytic activity [J]. React Kinet Catal Lett, 2007, 92(2): 239–246.
[40]
? HOU Yang, LI Xinyong, ZOU Xuejun, et al. Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-Chlorophenol degradeation [J]. Environ Sci Technol, 2009, 43(3): 858–863.
[41]
? BAVYKIN D V, FRIEDRICH J M, WALSH F C. Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications [J]. Adv Mater, 2006, 18(21): 2807–2824.
[42]
? GHICOV A, SCHMIDT B, KUNZE J, et al. Photoresponse in the visible range from Cr doped TiO2 nanotubes [J]. Chem Phys Lett, 2007, 433(4): 323–326.
[43]
? LIU Haijin, LIU Guoguang, ZHOU Qingxiang. Preparation and characterization of Zr doped TiO2 nanotube arrays on the titanium sheet and their enhanced photocatalytic activity [J]. J Solid State Chem, 2009, 182(12): 3238–3242.
[44]
? HAN Xiao, ZHU Yihua, YANG Xiaoling, et al. Electro- catalytic activity of Pt doped TiO2 nanotubes catalysts for glucose determination [J]. J Alloy Compd, 2010, 500: 247–251.
[45]
? SRINIVASAN M, WHITE T. Degradation of methylene blue by three-dimensionally ordered macroporous titania [J]. Environ Sci Technol, 2007, 41(12): 4405–4409.
[46]
? LAI Yuekun, HUANG Jianying, ZHANG Huifang, et al. Nitrogen-doped TiO2 nanotube array films with enhanced photocatalytic activity under various light sources [J]. J Hazard Mater, 2010, 184(1–3): 855–863.
[47]
? ZHANG Yanyan, FU Wuyou, YANG Haibin, et al. Synthesis and characterization of P-doped TiO2 nanotubes [J]. Thin Solid Films, 2009, 518: 99–103.
[48]
? ROY P, ALBU S P, SCHMUKI P, et al.TiO2 nanotubes in dye-sensitized solar cells: higher efficiencies by well-defined tube tops [J]. Electrochem Commun, 2010, 12(7): 949–951.
[49]
? LIANG Haichao, LI Xiangzhong. Visible-induced photocat- alytic reactivity of polymersensitized titania nanotube films [J]. Appl Catal B, 2009, 86(1): 8–17.
[50]
? SHRESTHA N K, YANG M, NAH Y C, et al. Self-organized TiO2 nanotubes: visible light activation by Ni oxide nanoparticle decoration [J]. Electrochem Commun, 2010, 12(2): 254–257.
[51]
? ZHANG Yunhuai, YANG Yannan, XIAO Peng, et al. Preparation of Ni nanoparticle TiO2 nanotube composite by pulse electrodeposition [J]. Mater Lett, 2009, 63(28): 2429– 2431.
[52]
? ZABAN A, MICIC O I, NOZIK A J, et al. Photosensitiza- tion of Nanoporous TiO2 electrodes with InP quantum dots [J]. Langmuir, 1998, 14(12): 3153–3156.
[53]
? BRAGA A, GIMENEZ G, CONCINA I, et al. Panchromatic sensitized solar cells based on metal sulfide quantum dots grown directly on nanostructured TiO2 electrodes [J]. J Phys Chem Lett, 2011, 2(5): 454–460.
[54]
? HUANG Shuqing, ZHANG Quanxin, HUANG Xiaoming, et al. Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays [J]. Nanotechnology, 2010, 21(37): 375201.
[55]
? YU Jiaguo, DAI Gaopeng, HUANG Baibiao, et al. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays [J]. J Phys Chem C, 2009, 113(37): 16394–16401.
[56]
? CHENG Shuli, FU Wuyou, YANG Haibin, et al. Photoele-ctrochemical performance of multiple semiconductors (CdS/CdSe/ZnS) cosensitized TiO2 photoelectrodes [J]. J Phys Chem C, 2012, 116(3): 2615–2621.
[57]
? SATO K, KOJIMA S, HATTORI S, et al. Controlling surface reactions of CdS nanocrystals: Photoluminescence activation, photoetching and photostability under light irradiation [J]. Nanotechnology, 2007, 18: 465702.
[58]
? AUGUGLIAROV, PALMISANO L, SCALFANI A, et al. Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photo- degradation [J]. J Phys Chem, 1988, 92(23): 6710–6713.
[59]
? OKAMOTO K, YAMAMOTO Y, TANAKA H, et al. Heterogeneous photocatalytic decomposition of phenol over TiO2 powder [J]. Bull Chem Soc Jpn, 1985, 58: 2015–2022.
[60]
? NOSAKA A Y, NISHINO J, FUJIWARA T, et al. Effects of thermal treatments on the recovery of adsorbed water and photocatalytic activities of TiO2 photocatalytic systems [J]. J Phys Chem B, 2006, 110(16): 8380–8385
YIN Yuxin. Fabrication and water photoelectrolysis properties of TiO2 nanotube arrays by anodization (in Chinese, dissertation). Tianjin: Tianjin University, 2007.
[63]
? PERNIK D R, TVRDY K, RADICH J G, et al. Tracking the adsorption and electron injection rates of CdSe quantum dots on TiO2: linked versus direct attachment [J]. J Phys Chem C, 2011, 115(27): 13511–13519.
[64]
? ARDALAN P, BRENMAN T P, LEE H B R, et al. Effects of self-assembled monolayerson solid-state CdS quantum dot sensitized solar cells [J]. ACS Nano, 2011, 5(2): 1495–1504.
[65]
? DIBBELL R S, WATSON D F. Distance-dependent electron transfer in tethered assemblies of CdS quantum dots and TiO2 nanoparticles [J]. J Phys Chem C, 2009, 113: 3139–3149.
[66]
? ZHU Guang, PAN Likun, XU Tao, et al. One-step synthesis of CdS sensitized TiO2 photoanodes for quantum dot-sensitized solar cells by microwave assisted chemical bath deposition method [J]. ACS Appl Mater Interfaces, 2011, 3(5): 1472–1478.
[67]
? BUHBUT S, ITAHAKOV S, TAUBER E, et al. Built-in quantum dot antennas in dye-sensitized solar cells [J]. ACS Nano, 2010, 4 (3):1293–1298.
[68]
? LIU Liping, WANG Gongming, LI Yat, et al. CdSe quantum dot- sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance [J]. Nano Res, 2011, 4(3): 249–258.
[69]
? NG Jiawei, ZHANG Xiwang, ZHANG Tong, et al. Construction of self-organized free-standing TiO2 nanotube arrays for effective disinfection of drinking water [J]. J Chem Technol Biotechnol, 2010, 85(8): 1061–1066.
[70]
? ERDEM S, ZELIHA C, NECMETTIN K, et al. Synthesis of highly- ordered TiO2 nanotubes for a hydrogen sensor [J]. Int J Hydrogen Energy, 2010, 35(9): 4420–4427.