? ABE T, MIZUTANI Y, KAWABATA N, et al. Effect of co-intercalated organic solvents in graphite on electrochemical Li intercalation [J]. Synth Met, 2001, 125: 249–253.
[2]
? WANG H Y, MASAKI Y. Electrochemical performance of raw natural graphite flakes as an anode material for lithium-ion batteries at the elevated temperature [J]. Mater Chem Phys, 2003, 79: 76–80.
[3]
? MARIUSZ W, DANIEL W, GRZEGORZ S, et al. Enhanced graphite passivation in Li-ion battery electrolytes containing disiloxane-type additive/co-solvent [J]. J Solid State Electrochem, 2010, 14: 2213– 2218.
[4]
? LI J F, XI B J, ZHU Y C, et al. A precursor route to synthesize mesoporous gamma-MnO2 microcrystals and their applications in lithium battery and water treatment [J]. J Alloys Compd, 2011, 509: 9542–9548.
[5]
? ZHAI C X, DU N, ZHANG H, et al. Large-scale synthesis of ultrathin hexagonal tin disulfide nanosheets with highly reversible lithium storage [J]. Chem Commun, 2011, 47: 1270–1272.
[6]
? AU M, HE Y P, ZHAO Y P, et al. Silicon and silicon-copper composite nanorods for anodes of Li-ion rechargeable batteries [J]. J Power Sources, 2011, 196: 9640–9647.
[7]
? WANG J Z, DU N, ZHANG H, et al. Large-scale synthesis of SnO2 nanotube arrays as high-performance anode materials of Li-ion batteries [J]. J Phys Chem C, 2011, 115: 11302–11305.
[8]
? YAN J, SUMBOJA A, KHOO E, et al. V2O5 loaded on SnO2 nanowires for high-rate Li ion batteries [J]. Adv Mater, 2011, 23: 746–751.
[9]
? LI JIA X, ZHAO Y, WANG N, et al. A high performance carrier for SnO2 nanoparticles used in lithium ion battery [J]. Chem Commun, 2011, 47: 5238–5240.
[10]
? WANG F, YAO G, XU M W, et al. Large-scale synthesis of macroporous SnO2 with/without carbon and their application as anode materials for lithium-ion batteries [J]. J Alloys Compd, 2011, 509: 5969–5973.
[11]
? ZHU J J, LU Z H, ARUNA S T, et al. Sonochemical synthesis of SnO2 nanoparticles and their preliminary study as Li insertion electrodes [J]. Chem Mater, 2000, 12: 2556–2566.
[12]
? LI F, YU X H, PAN H J, et al. Syntheses of MO2 (M = Si, Ce, Sn) nanoparticles by solid-state reactions at ambient temperature [J]. Solid State Sci, 2000, 2: 767–772.
[13]
? LIU H D, HUANG J M, LI X L, et al. SnO2 nanorods grown on graphite as a high-capacity anode material for lithium ion batteries [J]. Ceram Int, 2012, 38: 5145–5149
[14]
? PARK M S, KANG Y M, WANG G X, et al. The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials [J]. Adv Funct Mater, 2008, 18: 455–461.
[15]
? JONG G K, SANG H N, SANG H L, et al. SnO2 nanorod-planted graphite: an effective nanostructure configuration for reversible lithium ion storage [J]. ACS Appl Mater Interfaces, 2011, 3: 828–835.
[16]
? WANG J, ZHAO H L, LIU X T, et al. Electrochemical properties of SnO2/carbon composite materials as anode material for lithium-ion batteries [J]. Electrochim Acta, 2011, 56: 6441–6447.
[17]
? YUAN L, KONSTANTINOV K, WANG G X, et al. Nano-structured SnO2-carbon composites obtained by in situ spray pyrolysis method as anodes in lithium batteries [J]. J Power Sources, 2005, 146: 180–184.
[18]
? XU G L, CHEN S R, LI J T, et al. A composite material of SnO2/ ordered mesoporous carbon for the application in lithium-ion battery [J]. J Electroanal Chem, 2011, 656: 185–191.
[19]
? YANG R, GU Y G, LI Y Q, et al. Self-assembled 3-D flower-shaped SnO2 nanostructures with improved electrochemical performance for lithium storage [J]. Acta Mater, 2010, 58: 866–874.
[20]
? WANG H, LIANG Q Q, WANG W J, et al. Preparation of flower-like SnO2 nanostructures and their applications in gas-sensing and lithium storage [J]. Cryst Growth Des, 2011, 11: 2942–2947.