全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

锂离子电池正极材料Li3V2[(PO4)1–xFx]3/C的合成及性能表征

Full-Text   Cite this paper   Add to My Lib

Abstract:

以LiH2PO4、LiF和V2O5为原料,蔗糖为还原剂,用碳热还原法合成了Li3V2[(PO4)1–xFx]3/C(x=0、0.02、0.05、0.08、0.10和0.15),并用X射线衍射、Fourier变换红外光谱、循环伏安、交流阻抗谱和恒流充放电技术研究了F–掺杂对材料结构和电化学性能的影响。结果表明F–掺杂Li3V2(PO4)3/C与纯Li3V2(PO4)3/C均为单斜结构,但少量的F–掺杂可提高电极反应可逆程度和电导率,降低电荷传递阻抗;在所得的F–掺杂材料中,Li3V2[(PO4)0.95F0.05]3/C具有较好的电化学性能。在3.0~4.2V(vs.Li/Li+)循环时,电极的0.5C放电容量为124.4mA?h/g,50次循环后容量保持率为98.5%,15C下的放电容量为84.7mA?h/g,50次循环后容量保持率为97.4%,而Li3V2(PO4)3/C的仅为59.2mA?h/g和89.0%。

References

[1]  ? WANG J W, LIU J, YANG G L, et al. Electrochemical performance of Li3V2(PO4)3/C cathode material using a novel carbon source [J]. Electrochim Acta, 2009, 54(26): 6451–6254.
[2]  ? RUI X H, DING N, LIU J, et al. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material [J]. Electrochim Acta, 2009, 55(7): 2384–2390.
[3]  ? ZHOU X C, LIU Y M, GUO Y L. Effect of reduction agent on the performance of Li3V2(PO4)3/C positive material by one-step solid-state reaction [J]. Electrochim Acta, 2009, 54(8): 2253–2258.
[4]  ? TANG A P, WANG X Y, LIU Z M. Electrochemical behavior of Li3V2(PO4)3/C composite cathode material for lithium-ion batteries [J]. Mater Lett, 2008, 62(10–11): 1646–1648.
[5]  ? YU F, ZHANG J J, YANG Y F, et al. Preparation and electrochemical performance of Li3V2(PO4)3/C cathode material by spray-drying and carbothermal method [J]. J Solid State Electrochem, 2010, 14(5): 883–888.
[6]  ? ZHOU X C, LIU Y M, GUO Y L. One-step synthesis of Li3V2(PO4)3/C positive material with high performance for lithium-ion batteries [J]. Solid State Commun, 2008, 146(5–6): 261–264.
[7]  ? WANG L, JIANG X, LI X, et al. Rapid preparation and electrochemical behavior of carbon-coated Li3V2(PO4)3 from wet coordination [J]. Electrochim Acta, 2010, 55(18): 5057–5062.
[8]  ? JIANG T, WANG C, CHEN G, et al. Effects of synthetic route on the structural, physical and electrochemical properties of Li3V2(PO4)3 cathode materials [J]. Solid State Ionics, 2009, 180(9–10): 708–714.
[9]  ? BARD A J, FAULKNER L R. Electrochemical Methods: Fundamentals and Applications [M]. New York: Wiley, 1980, 328–345.
[10]  ? XU J, BUTTER I S, GILAON D F R. FT-Raman and high-pressure infrared spectroscopic studies of dicalcium phosphate dihydrate (CaHPO4?2H2O) and anhydrous dicalcium phosphate (CaHPO4)[J]. Spectrochim Acta Part A: Mol Biomol Spectrosc, 1999, 55(14): 2801– 2809.
[11]  ? YAMADA A, CHUNG S C, HINOKUMA K. Optimized LiFePO4 for lithium battery cathodes [J]. J Electrochem Soc, 2001, 148(3): A224– A229.
[12]  ? ZHENG J C, LI X H, WANG Z X, et al. Li3V2(PO4)3 cathode material synthesized by chemical reduction and lithiation method [J]. J Power Sources, 2009, 189(1): 476–479.
[13]  ? QIAO Y Q, WANG X L, XIANG J Y, et al. Electrochemical performance of Li3V2(PO4)3/C cathode materials using stearic acid as a carbon source [J]. Electrochim Acta, 2011, 56(5): 2269–2275.
[14]  ? RUI X H, LI C, CHEN C H. Synthesis and characterization of carbon-coated Li3V2(PO4)3 cathode materials with different carbon sources [J]. Electrochim Acta, 2009, 54(12): 3374–3380.
[15]  ? WANG J W, LIU J, YANG G L, et al. Electrochemical performance of Li3V2(PO4)3/C cathode material using a novel carbon source [J]. Electrochim Acta, 2009, 54(26): 6451–6254.
[16]  ? ZHANG L, TU J P, XIANG J Y, et al. Synthesis and electrochemical performances of Li3V2(PO4)3/(Ag+C) composite cathode [J]. J Power Sources, 2010, 195(15): 5057–5061.
[17]  ? FU P, ZHAO Y M, DONG Y Z, et al. Synthesis of Li3V2(PO4)3 with high performance by optimized solid-state synthesis routine [J]. J Power Sources, 2006, 162(1): 651–657.
[18]  ? JIANG T, PAN W C,WANG J, et al. Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol–gel method [J]. Electrochim Acta, 2010, 55(26): 3864–3869.
[19]  ? SATO M, OHKAWA H, YOSHIDA K, et al. Enhancement of discharge capacity of Li3V2(PO4)3 by stabilizing the orthorhombic phase at room temperature [J]. Solid State Ionics, 2000, 135(1–4): 137–142.
[20]  ? REN M M, ZHOU Z, LI Y Z, et al. Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries [J]. J Power Sources, 2006, 162(2): 1357–1362.
[21]  ? BARKER J, GOVER R K B, BURNS P, et al. The Effect of Al Substitution on the Electrochemical Insertion Properties of the Lithium Vanadium Phosphate, Li3V2(PO4)3 [J]. J Electrochem Soc, 2007, 154(4): A307–A313
[22]  ? LIU S Q, LI S C, HUANG K L, et al. Effect of Doping Ti4+ on the Structure and Performances of Li3V2(PO4)3 [J]. Acta Phys-Chim Sin, 2007, 23(4): 537–542.
[23]  ? CHEN Y H, ZHAO Y M, AN X N, et al. Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries [J]. Electrochim Acta, 2009, 54(24): 5844–5854.
[24]  ? KUANG Q, ZHAO Y M, AN X N, et al. Synthesis and electrochemical properties of Co-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries [J]. Electrochim Acta, 2010, 55(5): 1575–1581.
[25]  ? DAI C, CHEN Z, JIN H, et al. Synthesis and performance of Li3(V1?xMgx)2(PO4)3 cathode materials [J]. J Power Sources, 2010, 195(17): 5775–5779.
[26]  ? YAO J H, WEI S S, PINJIE ZHANG P J, et al. Synthesis and properties of Li3V2–xCex(PO4)3/C cathode materials for Li-ion batteries [J]. J Alloys Comp, 2012, 532: 49–54.
[27]  ? HUANG J S, YANG L, LIU K Y, et al.? Synthesis and characterization of Li3V(2–2x/3)Mgx(PO4)3/C cathode material for lithium-ion batteries [J]. J Power Sources, 2010, 195(15): 5013 –5018.
[28]  ? LIAO X Z, HE Y S, MA Z F, et al. Effects of fluorine-substitution on the electrochemical behavior of LiFePO4/C cathode materials [J]. J Power Sources, 2007, 174(2): 720–725.
[29]  ? MORGAN D, CEDER G, SA?DI M Y, et al. Experimental and computational study of the structure and electrochemical properties of LixM2(PO4)3 compounds with the monoclinic and rhombohedral structure [J]. Chem Mater, 2002, 14: 4684–4693.
[30]  ? ZOUARI N, BENAMOR M, MHIRI T, et al. Electrical properties of magnesium sodium hydrogen monophosphate: MgNa3H(PO4)2 [J]. J Alloys Comp, 1996, 240(1–2): 70–81.
[31]  ? SALAH A A, JOZWIAK P, GARBARCZYK J, et al. Local structure and redox energies of lithium phosphates with olivine- and Nasicon-like structures [J]. J Power Sources, 2005, 140(2): 370–375.
[32]  ? VIVEKANANDAN K, SELVASEKARAPANDIAN S, KOLANDAIVEL P, et al. Raman and FTIR spectroscopic characterisation of flux grown KTiOPO4 and KRbTiOPO4 non-linear optical crystals [J]. Mater Chem Phys, 1997, 49(3): 204–210.
[33]  References:
[34]  ? WHITTINGHAM M S. Lithium batteries and cathode materials [J]. Chem Rev, 2004, 104: 4271–4301.
[35]  ? PANG C H, WU C, WU F, et al. Development on synthesis methods for nano-materials of cathode for lithium ion battery [J]. J Chin Ceram Soc, 2012, 40(2): 247–255.
[36]  ? YIN S C, GRONDEY H, STROBEL P, et al. Electrochemical property: structure relationships in monoclinic Li3–yV2(PO4)3 [J]. J Am Chem Soc, 2003, 125(34): 10402–10411.
[37]  ? YIN S C, GRONDEY H, STROBEL P, et al. Charge ordering in lithium vanadium phosphates: electrode materials for lithium-ion batteries [J]. J Am Chem Soc, 2003, 125(2): 326–327.
[38]  ? HUANG H, YIN S C, KERR T, et al. Nanostructured composites: a high capacity, fast rate Li3V2(PO4)3/ carbon cathode for rechargeable lithium batteries [J]. Adv Mater, 2002, 14(21): 1525–1528.
[39]  ? SA?DI M Y, BARKER J, HUANG H, et al. Performance characteristics of lithium vanadium phosphate as a cathode material for lithium-ion batteries [J]. J Power Sources, 2003, 119–121: 266–272.
[40]  ? WANG H, LI Y J, HUANG C H, et al. High-rate capability of Li3V2(PO4)3/C composites prepared via a polyvinylpyrrolidone- assisted sol–gel method [J]. J Power Sources, 2012, 208: 282–287.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133