? YVON P, CARRé F. Structural materials challenges for advanced reactor systems [J]. J Nucl Mater, 2009, 385(2): 217–222.
[3]
? ABENOJAR J, VELASCO F, TORRALBA J M, et al. Reinforcing 316 L stainless steel with intermetallic and carbide particles [J]. Mater Sci Eng A-Struct. 2002, 335(1–2): 1–5.
[4]
? CLYNE T W, WITHERS P J. An introduction to metal matrix composites [M]. Cambridge: Cambridge University Press, 1993.
[5]
? YIN Y S, GONG H Y, Li J, et al. Preparation and? properties of Al2O3/Fe3Al composites [J]. J Chin Ceram Soc, 2003, 31(8): 721–726.
[6]
? ZOU Z G, CHEN H Y, MAI L Q. Research on TiC/Fe composite by in-situ carbothermic reduction and synthesis from ilmenite [J]. J Chin Ceram Soc, 2001, 29(3): 199–203.
[7]
? KONOPKA K, OZI?B?O A. Microstructure and the fracture toughness of the Al2O3–Fe composites [J]. Mater Charact, 2001, 46(2–3): 125– 129.
[8]
? WANG H L, ZHANG R, WANG C A, et al. Process and mechanism of microwave sintering of SiC-Cu/Al composites [J]. J Chin Ceram Soc, 2006 34(12): 1431–1436.
[9]
? TANG Wenming, ZHENG Zhixiang, DING Houfu. Progresses of study of solid state reaction and control of SiC/metal system [J]. J Chin Ceram Soc, 2003 31(3): 283–291.
[10]
? ZEBARJAD S M, SAJJADI S A. Dependency of physical and mechanical properties of mechanical alloyed Al–Al2O3 composite on milling time [J]. Mater Design, 2007, 28(7): 2113–2120.
[11]
? NI Z F, SUN Y S, XUE F, et al. Microstructure and properties of austenitic stainless steel reinforced with in situ TiC particulate [J]. Mater Design, 2011, 32(3): 1462–1467.
[12]
? IBRAHIM I A, MOHAMED F A, LAVERNIA E J. Particulate reinforced metal matrix composites – a review [J]. J Mater Sci, 1991, 26(5): 1137–1156.
[13]
? ARIK H. Effect of mechanical alloying process on mechanical properties of α-Si3N4 reinforced aluminum-based composite materials [J]. Mater Design, 2008, 29(9): 1856–1861.
[14]
? BARSOUM M W. The MN+1AXN Phases: A new class of solids: Thermodynamically stable nanolaminates [J]. Prog Solid State Chem, 2000, 28: 201–81.
[15]
? ZHOU W, ZHAI H X, HUANG Z Y. High speed friction characteristics and frictional oxidation of titanium aluminum carbide [J]. J Chin Ceram Soc, 2006, 34(5): 523–526.
[16]
? LI S B, YU W B, ZHAI H X, et al. Mechanical properties of low temperature synthesized dense and fine-grained Cr2AlC ceramics. J Eur Ceram Soc. 2011, 31(1/2): 217–24.
[17]
? PANG W K, LOW I M, O'CONNOR B H, et al. Comparison of thermal stability in MAX211 and 312 phases [C]//International Conference on Neutron Scattering, Knoxville, 2009: 5–3.
[18]
? GUPTA S, FILIMONOV D, ZAITSEV V, et al. Study of tribofilms formed during dry sliding of Ta2AlC/Ag or Cr2AlC/Ag composites against Ni-based superalloys and Al2O3 [J]. Wear, 2009, 267(9–10): 1490–1500.
[19]
? WANG J Y, ZHOU Y C. Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC (M = Ti,V,Nb, and Cr) ceramics [J]. Phys Rev B, 2004, 69(21): 214111.
[20]
? YING G B, HE X D, LI M W, et al. Effect of Cr7C3 on the mechanical, thermal, and electrical properties of Cr2AlC [J]. J Alloy Compd, 2011, 509(31): 8022–8027.
[21]
? CUI S X, WEI D Q, HU H Q, et al. First-principles study of the structural and elastic properties of Cr2AlX (X = N, C) compounds [J]. J Solid State Chem, 2012, 191: 147–152.
[22]
? LIN Z J, ZHOU Y C, LI M S. Synthesis, microstructure, and property of Cr2AlC [J]. J Mater Sci Technol, 2007, 23(6): 721–746.
[23]
? YANG Z J, LINGHU R F, CHENG X L, et al. First-principles investigations on the electronic, elastic and thermodynamic properties of Cr2MC(M = Al, Ga)[J]. Acta Phys Sin-Ch Ed, 2012, 61(4): 046301– 046312.
[24]
? SHEHATA F, FATHY A, ABDELHAMEED M, et al. Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing [J]. Mater Design, 2009, 30(7): 2756–2762.
[25]
? TJONG S C, MA Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites [J]. Mater Sci Eng R, 2000, 29(3–4): 49–113.
[26]
? CHEN X H, ZHAI H X, SONG P F, et al. Reaction behavior of Ti3AlC2 with Fe at high temperature [J]. Rare Metal Mater Eng, 2011(S1): 499–502.
[27]
? ZHANG J, WANG J Y, ZHOU Y C. Structure stability of Ti3AlC2 in Cu and microstructure evolution of Cu–Ti3AlC2 composites [J]. Acta Mater, 2007, 55(13): 4381–4390.
[28]
? AI M X, ZHAI H X, TANG Z Y. Interformational exfoliation of Ti3AlC2 induced by Cu [J]. Key Eng Mater, 2007, 336–338: 1371–1373.
[29]
? ZHANG Y, SUN Z, ZHOU Y. Cu/Ti3SiC2 composite: a new electrofriction material [J]. Mater Res Innov, 1999, 3(2): 80–84.
[30]
? ZHAI H X, AI M X, HUANG Z Y, et al. Unusual microstructures and strength characteristics of Cu/Ti3AlC2 cermets [J]. Key Eng Mater, 2007, 336/338: 1394–1396.
[31]
? ZHANG Z L, ZHAI H X, ZHOU Y, et al. Preparation of composites from Al and Ti3AlC2 and its tribo-chemistry reactions against low carbon steel [J]. Key Eng Mater, 2008, 368/372: 989–991.
[32]
? BAKER H, OKAMOTO H. ASM Handbook [M]. USA: ASM International Handbook Committee, 1992.