全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

原位反应法制备Cr2AlC-Fe基复合材料

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用原位反应法制备了Cr2AlC-Fe基复合材料,通过热分析、X射线衍射、扫描电子显微镜和三点弯曲实验研究了原位反应的烧结工艺对产物物相、显微结构和性能的影响。结果表明通过高温原位反应,原料中碳化铝铬发生了分解,所生成的碳铬化合物在Fe晶界形成了网络状陶瓷增强结构,所制备的复合材料在室温下具有较好的强度和韧性。但随着碳化铝铬含量的增加,复合材料的强度与断裂韧性之间呈负相关关系。当原料中碳化铝铬的含量为50%,烧结温度为1300℃,在30MPa压力下保温30min时,复合材料的抗弯强度达1417.05MPa,但断裂韧性只有18MPa?m1/2。

References

[1]  References:
[2]  ? YVON P, CARRé F. Structural materials challenges for advanced reactor systems [J]. J Nucl Mater, 2009, 385(2): 217–222.
[3]  ? ABENOJAR J, VELASCO F, TORRALBA J M, et al. Reinforcing 316 L stainless steel with intermetallic and carbide particles [J]. Mater Sci Eng A-Struct. 2002, 335(1–2): 1–5.
[4]  ? CLYNE T W, WITHERS P J. An introduction to metal matrix composites [M]. Cambridge: Cambridge University Press, 1993.
[5]  ? YIN Y S, GONG H Y, Li J, et al. Preparation and? properties of Al2O3/Fe3Al composites [J]. J Chin Ceram Soc, 2003, 31(8): 721–726.
[6]  ? ZOU Z G, CHEN H Y, MAI L Q. Research on TiC/Fe composite by in-situ carbothermic reduction and synthesis from ilmenite [J]. J Chin Ceram Soc, 2001, 29(3): 199–203.
[7]  ? KONOPKA K, OZI?B?O A. Microstructure and the fracture toughness of the Al2O3–Fe composites [J]. Mater Charact, 2001, 46(2–3): 125– 129.
[8]  ? WANG H L, ZHANG R, WANG C A, et al. Process and mechanism of microwave sintering of SiC-Cu/Al composites [J]. J Chin Ceram Soc, 2006 34(12): 1431–1436.
[9]  ? TANG Wenming, ZHENG Zhixiang, DING Houfu. Progresses of study of solid state reaction and control of SiC/metal system [J]. J Chin Ceram Soc, 2003 31(3): 283–291.
[10]  ? ZEBARJAD S M, SAJJADI S A. Dependency of physical and mechanical properties of mechanical alloyed Al–Al2O3 composite on milling time [J]. Mater Design, 2007, 28(7): 2113–2120.
[11]  ? NI Z F, SUN Y S, XUE F, et al. Microstructure and properties of austenitic stainless steel reinforced with in situ TiC particulate [J]. Mater Design, 2011, 32(3): 1462–1467.
[12]  ? IBRAHIM I A, MOHAMED F A, LAVERNIA E J. Particulate reinforced metal matrix composites – a review [J]. J Mater Sci, 1991, 26(5): 1137–1156.
[13]  ? ARIK H. Effect of mechanical alloying process on mechanical properties of α-Si3N4 reinforced aluminum-based composite materials [J]. Mater Design, 2008, 29(9): 1856–1861.
[14]  ? BARSOUM M W. The MN+1AXN Phases: A new class of solids: Thermodynamically stable nanolaminates [J]. Prog Solid State Chem, 2000, 28: 201–81.
[15]  ? ZHOU W, ZHAI H X, HUANG Z Y. High speed friction characteristics and frictional oxidation of titanium aluminum carbide [J]. J Chin Ceram Soc, 2006, 34(5): 523–526.
[16]  ? LI S B, YU W B, ZHAI H X, et al. Mechanical properties of low temperature synthesized dense and fine-grained Cr2AlC ceramics. J Eur Ceram Soc. 2011, 31(1/2): 217–24.
[17]  ? PANG W K, LOW I M, O'CONNOR B H, et al. Comparison of thermal stability in MAX211 and 312 phases [C]//International Conference on Neutron Scattering, Knoxville, 2009: 5–3.
[18]  ? GUPTA S, FILIMONOV D, ZAITSEV V, et al. Study of tribofilms formed during dry sliding of Ta2AlC/Ag or Cr2AlC/Ag composites against Ni-based superalloys and Al2O3 [J]. Wear, 2009, 267(9–10): 1490–1500.
[19]  ? WANG J Y, ZHOU Y C. Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC (M = Ti,V,Nb, and Cr) ceramics [J]. Phys Rev B, 2004, 69(21): 214111.
[20]  ? YING G B, HE X D, LI M W, et al. Effect of Cr7C3 on the mechanical, thermal, and electrical properties of Cr2AlC [J]. J Alloy Compd, 2011, 509(31): 8022–8027.
[21]  ? CUI S X, WEI D Q, HU H Q, et al. First-principles study of the structural and elastic properties of Cr2AlX (X = N, C) compounds [J]. J Solid State Chem, 2012, 191: 147–152.
[22]  ? LIN Z J, ZHOU Y C, LI M S. Synthesis, microstructure, and property of Cr2AlC [J]. J Mater Sci Technol, 2007, 23(6): 721–746.
[23]  ? YANG Z J, LINGHU R F, CHENG X L, et al. First-principles investigations on the electronic, elastic and thermodynamic properties of Cr2MC(M = Al, Ga)[J]. Acta Phys Sin-Ch Ed, 2012, 61(4): 046301– 046312.
[24]  ? SHEHATA F, FATHY A, ABDELHAMEED M, et al. Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing [J]. Mater Design, 2009, 30(7): 2756–2762.
[25]  ? TJONG S C, MA Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites [J]. Mater Sci Eng R, 2000, 29(3–4): 49–113.
[26]  ? CHEN X H, ZHAI H X, SONG P F, et al. Reaction behavior of Ti3AlC2 with Fe at high temperature [J]. Rare Metal Mater Eng, 2011(S1): 499–502.
[27]  ? ZHANG J, WANG J Y, ZHOU Y C. Structure stability of Ti3AlC2 in Cu and microstructure evolution of Cu–Ti3AlC2 composites [J]. Acta Mater, 2007, 55(13): 4381–4390.
[28]  ? AI M X, ZHAI H X, TANG Z Y. Interformational exfoliation of Ti3AlC2 induced by Cu [J]. Key Eng Mater, 2007, 336–338: 1371–1373.
[29]  ? ZHANG Y, SUN Z, ZHOU Y. Cu/Ti3SiC2 composite: a new electrofriction material [J]. Mater Res Innov, 1999, 3(2): 80–84.
[30]  ? ZHAI H X, AI M X, HUANG Z Y, et al. Unusual microstructures and strength characteristics of Cu/Ti3AlC2 cermets [J]. Key Eng Mater, 2007, 336/338: 1394–1396.
[31]  ? ZHANG Z L, ZHAI H X, ZHOU Y, et al. Preparation of composites from Al and Ti3AlC2 and its tribo-chemistry reactions against low carbon steel [J]. Key Eng Mater, 2008, 368/372: 989–991.
[32]  ? BAKER H, OKAMOTO H. ASM Handbook [M]. USA: ASM International Handbook Committee, 1992.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133