全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

载银TiO2纳米管阵列的制备及性能(英文)

DOI: 10.7521/j.issn.0454-5648.2014.03.23

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了增加生物医用钛及其合金的生物活性和其他特殊功能,对钛合金表面进行改性和功能化。采用阳极氧化法在钛合金表面制备出TiO2纳米管阵列,再用真空浸渍法制备载银TiO2纳米管阵列;研究了载银TiO2纳米管阵列的抗菌作用。结果表明阳极氧化法使钛合金表面形成高度整齐的TiO2纳米管阵列,其管径为150~200nm,管长为400~500nm,管壁厚为20nm,且纳米银颗粒沉积在纳米管的管口及管壁上,其粒径约为10~20nm。在磷酸盐缓冲液中,银离子释放时间至少能够持续13d。该载银TiO2纳米管阵列对金黄葡萄球菌和大肠杆菌具有一定的抑制作用。

References

[1]  KUMAR R, HOWDLE S, MUNSTEDT H. Polyamide/silver antimicrobials: effect of filler types on the silver ion release [J]. J Biomed Mater Res B: Appl Biomater, 2005, 75: 311-319.
[2]  AGARWAL A, WEIS T L, SCHURR M J, et al. Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells[J]. Biomaterials, 2010, 31: 680-690.
[3]  RAMSTEDT M, EKSTRAND-HAMMARSTROM B, SHCHUKAREV A V, et al. Bacterial and mammalian cell response to poly (3-sulfopropyl methacrylate) brushes loaded with silver halide salts [J]. Biomaterials, 2009, 30: 1524-1531.
[4]  SONG Yan-Yan, SCHMIDT-STEIN Felix, BAUER Sebastian, et al. Amphiphilic TiO2 nanotube arrays: An actively controllable drug delivery system [J]. J Am Chem Soc, 2009, 131: 4230-4232.
[5]  DEY T, ROY P, FABRY B, et al. Anodic mesoporous TiO2 layer on Ti for enhanced formation of biomimetic hydroxyapatite[J]. Acta Biomater, 2011, 7: 1873-1879.
[6]  VASILEV K, POH Z, KANT K, et al. Tailoring the surface functionalities of titania nanotube arrays[J]. Biomaterials, 2010, 31: 532-540.
[7]  GULATI Karan, RAMAKRISHNAN Saminathan, AWA Moom Sinn, et al. Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion [J]. Acta Biomater, 2012, 8(1): 449-456.
[8]  NOORT R. Titanium: the implant material of today [J].Mater Sci, 1987, 22(14): 3801-3811.
[9]  TEMGRALLL P, LUNSFYTOM I. Physieo-chemical consideration of titanium as a biomaterial[J]. Clin Mater, 1992, 9(l): 115-134.
[10]  WANG D A, LIU Y, WANG C W, et al. TiO2 nanotube arrays fabricated by anodization [J]. Prog Chem(in Chinese), 2010, 22(6): 1035-1043.
[11]  MINAGAR Sepideh, BERNDT Christopher C, WANG James, et al. A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces [J]. Acta Biomater, 2012, 8: 2875-2888.
[12]  CAI Q Y, PAULOSE M, VARGHESE O K, et al. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation [J]. Mater Res, 2005, 20(1): 230-236.
[13]  JIAO Xingjian, LIN Hong, LI Sizhao, et al. Fabrication of highly-oriented TiO2 nanotube arrays and its application in dye-sensitized solar cells[J]. J Chin Ceram Soc, 2011, 39(4): 581-584.
[14]  LI Shipu, LIAO Junjun, LIN Shiwei, et al. Researches progress on fabrication and doping as well as modification of titania nanotubes[J]. J Chin Ceram Soc, 2011, 39(6): 1034-1044.
[15]  TIAN Ang, WANG Mei, LIN Caixia, et al. Bio-compatibility of hydroxyapatite/TiO2 composite coatings in artficial cerebrospinal fluid[J]. J Chin Ceram Soc, 2010, 38(8): 1586-1590.
[16]  BAUER Sebastian, KLEBER Sebastian, SCHMUKI Patrik. TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes [J]. Electrochem Commun, 2006, 8: 1321-1325.
[17]  VASILEV Krasimir, POH Zihan, KANT Krishna, et al. Tailoring the surface functionalities of titania nanotube arrays[J]. Biomaterials, 2010, 31: 532-540.
[18]  ZHAO L, CHU P K, ZHANG Y, et al. Antibacterial coatings on titanium implants [J]. J Biomed Mater Res B: Appl Biomater, 2009, 91: 470-480.
[19]  COSTA F, CARVALHO I F, MONTELARO R C, et al. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces[J]. Acta Biomater, 2011, 7: 14311440.
[20]  PERCIVAL S L, BOWLER P G, RUSSELL D. Bacterial resistance to silver in wound care [J]. J Hosp Infect, 2005, 60: 1-7.
[21]  REN X C, SHI Z F, KONG L R. Silver modification of TiO2 thin films and their photocatalytic activity [J]. Chin J Catal (in Chinese), 2006, 27(9): 815-822.
[22]  CHEN Kansong, FENG Xinran, HU Rui, et al. Effect of Ag nanoparticle size on the photoelectrochemical properties of Ag decorated TiO2 nanotube arrays [J]. J Alloy Compd, 2013, 554: 72-79
[23]  SUN Lan, LI Jing, WANG Chenglin, et al. Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity [J]. J Hazard Mater, 2009, 171: 1045-1050.
[24]  YANG H, SHEN Q H, GAO J W. Preparation of TiO2 sol containing anatase-rutile mischcrystal grains and its photocatalytic activity [J]. Rare Met Mater Eng (in Chinese), 2008, 37(Suppl. 2): 201-203.
[25]  CAO Y Q, LONG H J, CHEN Y M, et al. Photocatalytic activity of TiO2 films with rutile/anatase mixed crystal structures [J]. Acta Phys-Chim Sin, 2009, 25(6): 1088-1092.
[26]  HARDES J, AHRENS H, GEBERT C, et al. Lack of toxicological side-effects in silver-coated megaprostheses in humans [J]. Biomaterials, 2007, 28: 2869-2875.
[27]  ALT V, BECHERT T, STEINRUCKE P, et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticle silver bone cement [J]. Biomaterials, 2004, 25: 4383-4391.
[28]  BOSETTI M, MASSE A, TOBIN E, et al. Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity [J]. Biomaterials, 2002, 23: 887-892.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133