LIN Hong, JIAO Xingjian, ZHAO Xiaochong, et al. J Chin Ceram Soc, 2011, 39(7): 1061-1066.
[5]
THONGMEE S, PANG H L, DING J, et al. Fabrication and magnetic properties of metallic nanowires via AAO templates [J]. J Magn Magn Mater, 2009, 321: 2712-2716.
[6]
YANG L Y, WANG J X, DONG X T, et al. Synthesis of Y2O2S∶Eu3+ luminescent nanobelts via electrospinning combined with sulfurization technique [J]. J Mater Sci, 2013, 48: 644-650.
[7]
LU X W, LI X Z, QIAN J C, et al. The surfactant-assisted synthesis of CeO2 nanowires and their catalytic performance for CO oxidation [J]. Powder Technol, 2013, 239: 415-421.
[8]
HAN Z X, LI J Y, BAO W, et al. Enhanced toxicity of atrazine to daphnia magna in the presence of nano-CeO2 [J]. Chin J Geochem, 2012, 31: 297-302.
[9]
BEHDANI F N, RAFSANJANI A T, TORAB-MOSTAEDI M, et al. Adsorption ability of oxidized multiwalled carbon nanotubes towards aqueous Ce(III) and Sm(III) [J]. Korean J Chem Eng, 2013, 30(2): 448-455.
[10]
KANG X J, YANG D M, MA P A, et al. Fabrication of hollow and porous structured GdVO4: Dy3+ nanospheres as anticancer drug carrier and MRI contrast agent [J]. Langmuir, 2013, 29: 1286-1294.
[11]
HONG S, WANG L. Up/down conversion luminescence rare-earth ion-doped Y2O3 1D nanocrystals [J]. Sci China-Chem, 2012, 55(7): 1242-1246.
[12]
YUAN X Y, CHANG J, PANG F, et al. Synthesis of nonstoichiometric NdxNi1-xOy nanotube arrays and magnetism, upconversion behavior [J]. Solid State Commun, 2010, 150: 1355-1358.
[13]
FAN R, DENG X P, YUAN X Y. Controllable synthesis of NdCoxOy nanowire arrays and magnetic behaviour [J]. Micro Nano Lett, 2012, 7(12): 1328-1332.
[14]
LI C X, LIU X M, YANG P P, et al. LaF3, CeF3, CeF3∶Tb3+, and CeF3∶Tb3+@LaF3 (core-shell) nanoplates: hydrothermal synthesis and luminescence properties [J]. J Phys Chem C, 2008, 112:2904-2910.
[15]
CROSS A M, MAY P S, VEGGEL F C J M, et al. Dipicolinate sensitization of europium luminescence in dispersible 5%Eu∶LaF3 nanoparticles [J]. J Phys Chem C, 2010, 114: 14740-14747.
[16]
LORBEER C, MUDRING A V. White-light-emitting single phosphors via triply doped LaF3 nanoparticles [J]. J Phys Chem C, 2013, 117: 12229-12238.
[17]
LUNSTROOT K, BAETEN L, NOCKEMANN P, et al. Luminescence of LaF3:Ln3+nanocrystal dispersions in ionic liquids[J]. J Phys Chem C, 2009, 113: 13532-13538.
[18]
DU C Y, CHEN M, WANG W G, et al. Platinum-based intermetallic nanotubes with a coreeshell structure as highly active and durable catalysts for fuel cell applications [J]. J Power Sources, 2013, 240: 630-635.
[19]
LIU W, SUNB W L, BORTHWICKC A G L, et al. Comparison on aggregation and sedimentation of titanium dioxide, titanate nanotubes and titanate nanotubes-TiO2: In-uence of pH, ionic strength and natural organic matter [J]. Colloids Surf A, 2013, 434: 319-328.
[20]
ZHAO M G, LI Z L, HAN Z Q, et al. Synthesis of mesoporous multiwall ZnO nanotubes by replicating silk and application for enzymatic biosensor [J]. Biosens Bioelectron, 2013, 49: 318-322.
LIU Guixia, SUI Ruixiang, WANG Jinxian, et al. The preparation and Luminescence Properties of LaF3∶Eu3+ Nanorod [J]. Chem J Chin Univ (in chinese), 2008, 29(3): 461-464.
[27]
WANG Z L. Theme issue: inorganic nanotubes and nanowires [J]. J Mater Chem, 2009, 19: 826-827.
[28]
MENG J X, ZHANG M F, LIU Y L, et al. Hydrothermal preparation and luminescence of LaF3∶Eu3+ nanoparticles [J]. Spectrochim Acta Part A, 2007, 66: 81-85.