全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

La0.6Sr0.4Co0.2Fe0.8O3---δ--Gd0.1Ce0.9O1.95复相材料的性能

DOI: 10.7521/j.issn.0454-5648.2014.04.18

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过干压成型制备了La0.6Sr0.4Co0.2Fe0.8O3--δ--Gd0.1Ce0.9O1.95(LSCF-GDC)系列双相复合材料,研究了不同LSCF含量对复合材料电导率及烧结性能的影响,同时对微观结构进行了深入分析。结果表明LSCF含量越高,材料的电导率越高,LSCF质量含量为65%时,800℃电导率可达141.7S/cm。扫描电子显微镜分析了材料的微观结构,晶粒发育良好,结构致密;LSCF对GDC晶粒增长有抑制作用,LSCF质量含量为65%时,1350℃烧结5h,GDC晶粒尺寸仅有0.3~0.6μm。因此具有很好的微观结构及电性能的双相复合LSCF-GDC透氧膜材料将具有很好的应用前景。

References

[1]  MUNDSCHAU M.V, XIE X, et al. Dense inorganic membranes for production of hydrogen from methane and coal with carbon dioxide sequestration[J]. Catal Today, 2000, 118: 12-23.
[2]  BOSE A C, et al. Beyond state-of-the-art gas separation processes using ion-transport membranes[J]. Desalination,2002, 144(1/3):91-92.
[3]  田婷芳. 陶瓷透氧膜材料和过程硏究[D]. 合肥:中国科学技术大学, 2011.
[4]  TIAN Tingfang. Ceramic oxygen-permeable membrane materials and processes (in Chinese, dissertation). Hefei: University of Science and Technology of China, 2011.
[5]  SUNDKVIST S G, GRIFFIN T, Thorshaug N P. AZEP - Development of an Integrated Air Separation Membrane -Gas Turbine, Second Nordic Minisymposium on Carbon Dioxide Capture and Storage[C]. Gorg, Sweden, 2001:52-57.
[6]  ?徐南平.面向应用过程的陶瓷膜材料设计、制备与应用[M].北京:科学出版社,2005.
[7]  佟建华,杨维慎. 钙钛矿型氧化物混合导体透氧膜材料的选择[J]. 膜科学与技术, 2003, 23(1): 33-42.
[8]  TOGN Jianhua, YANG Weishen. Membrane Sci Technol(in chinese), 2003, 23(1): 33-42.
[9]  QIU L, LEE T H, LIU L M, et al. Oxygen permeation studies of SrCo0.8Fe0.2O3-δ[J]. Solid State Ionics, 1995, 76:321-329.
[10]  杨志宾, 韩敏芳, 袁燕, 等. 混合电导陶瓷材料研究进展[J]. 真空电子技术, 2006,4:46-50.
[11]  YANG Zhibin, HAN Minfang, YUAN Yan, et al. Vacuum Electron (in chinese), 2006,4:46-50.
[12]  WANG B, ZHAN M C, ZHU D C, et al. Oxygen permeation and stability of Zr0.8Y0.2O0.9-La0.8Sr0.2CrO3-δ dual-phase composite[J]. J Solid State Electr,2006,10: 625-628.
[13]  陈婷,赵海雷,谢志翔,等. 双相致密透氧[J].化学进展,2012,24(1):163-172.
[14]  Chen Ting, Zhao Hailei, Xie Zhixiang et al. Prog Chem ( in Chinese),2012,24(1):163-172.
[15]  HAN M F, LIU Z, ZHOU S, et al. Influence of lithium oxide addition on the sintering behavior and electrical conductivity of gadolinia doped ceria[J]. J Mater Sci Technol, 2011, 27(5):460-464.
[16]  HAN M F, ZHOU S, LIU Z, et al. Fabrication, sintering and electrical properties of cobalt oxide doped Gd0.1Ce0.9O2-δ[J]. Solid State Ionics 2011,192(1):181-184.
[17]  STRUASS S W, FANKUCHEN I, ROLAND W. Barium cobalt oxide of the perovskite type[J]. J Am Chem Soc, 1951,73(11):5084-5086.
[18]  KIM J H, KIM Y N, CHO S M, et al. Electrochemical characterization of YBaCo3ZnO7+Gd0.2Ce0.8O1.9 composite cathodes for intermediate temperature solid oxide fuel cells[J]. Electrochim Acta, 2010, 55(19):5312-5317.
[19]  SUN C W, HUI R, JUSTIN R, et al. Cathode materials for solid oxide fuel cells: a review[J]. J Solid State Electrochem,2010,14(7):1125-1144.
[20]  ULLMANN H, TROFIMENKO N, TIETZ F. Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes[J]. Solid State Ionics, 2000, 138(1-2):79-90.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133