HASHEMI B, NEMATI Z A, FAGHIHISANI M A. Effect of resin and graphite content on density and oxidation behavior of MgO-C refractory bricks [J]. Ceram Int, 2006, 32(3): 313-319.
SUO J, CHEN Z, HAN W M, et al. J Chin Ceram Soc, 2005, 33(3): 386-390.
[4]
LUO M, LI Y W, SANG S B, et al. In situ formation of carbon nanotubes and ceramic whiskers in Al2O3 refractories with addition of Ni-catalyzed phenolic resin [J]. Mater Sci Eng A, 2012, 558: 533-542.
HOU L X, LIU Y. J Chin Ceram Soc, 2011, 39(7): 1223-1228.
[7]
KLEMM Y, BIERMANN H, ANEZIRIS C G. Microstructure and mechanical properties of fine grained carbon-bonded Al2O3-C materials [J]. Ceram Int, 2013, 39(6): 6695-6702.
[8]
ANEZIRIS C G, BORZOV D, ULBRICHT J, et al. Phenolic resin with carbo-resin additions for improved MgO-C refractories [J]. Key Eng Mater, 2004, 264-268: 1767-1770.
[9]
KIDO N, YAMAMOTO K, KAMIIDE M, et al. Carbon nanofiber-a new trial for magnesia based brick [C]//Proceedings of the 8th Unified Internation Technical Conference on Refractories, Japan, Osaka, 2003: 264-267.
[10]
HORIKAWA T, OGAWA K, MIZUNO K, et al. Preparation and characterization of the carbonized material of phenol-formaldehyde resin with addition of various organic substances [J]. Carbon, 2003, 41(3): 465-472.
[11]
STAMATIN I, MOROZAN A, DUMITRU A, et al. The synthesis of multi-walled carbon nanotubes (MWNTs) by catalytic pyrolysis of the phenol-formaldehyde resins [J]. Physica E, 2007, 37: 44-48.
[12]
KONG Q H, ZHANG J H. Synthesis of straight and helical carbon nanotubes from catalytic pyrolysis of polyethylene [J]. Polym Degrad Stab, 2007, 92(11): 2005-2010.
[13]
CHUNG Y H, SHYANKAY J. Carbon nanotubes from catalytic pyrolysis of polypropylene [J]. Mater Chem Phys, 2005, 92: 256-259.
[14]
YI S J, FAN Z, Wu C, et al. Catalytic graphitization of furan resin carbon by yttrium [J]. Carbon, 2008, 46(2): 378-380.
[15]
DUBOIS M, NAJI A, BUISSON J P, et al. Characterization of carbonaceous materials derived from polyparaphenylene pyrolyzed at low temperature [J]. Carbon, 2000, 38(9): 1411-1417.
[16]
MORTERRA C, LOW M J D. Studies of carbon VII: the pyrolysis of a phenol-formaldehyde resin[J].Carbon, 1985, 23(5): 525-530.
[17]
TRICK K A, SALIBA T E. Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite [J]. Carbon, 1995, 33(11): 1509-1515.
[18]
MANFREDI L B, OSA O, FENANDEZ N G, et al. Structure-properties relationship for resols with different formaldehyde/phennol malar ratio [J]. Polymer, 1999, 40(13): 3867-3875.
[19]
ZHANG Y, SHEN S H, LIU Y J. The effect of titanium incorporation on the thermal stability of phenol-formaldehyde resin and its carbonization microstructure [J]. Polym Degrad Stab, 2013, 98(2): 514-518.
[20]
MIAO H Y, LUE J T, CHEN S Y, et al. Growth of carbon nanotubes on transition metal alloys by microwave-enhanced hot-filament deposition [J]. Thin Solid Film, 2005, 484: 58-63.
[21]
MERKULOV V I, LOWNDES D H, WEI Y Y, et al. Patterned growth of individual and multiple aligned carbon nanofibers [J]. Appl Phys Lett, 2000, 76: 3555-3557.
[22]
GHORBANI H, RASHIDI A M, RASTEGARI S, et al. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield [J]. Mater Res Bull, 2011, 46: 716-721.
[23]
ZHAO N Q, HE C N, JIANG Z Y, et al. Fabrication and growth mechanism of carbon nanotubes by catalytic chemical vapor deposition [J]. Mater Lett, 2006, 60(2): 159-163.
[24]
LOUCHEV O A, SATO Y, KANDA H. Growth mechanism of carbon nanotubes forests by chemical vapor deposition [J]. Appl Phys Lett, 2002, 80(15): 2752-2754.
[25]
BARTSCH K, ARNOLD B, KALTOFEN R, et al. Effect of catalyst pre-treatment on the growth of single-walled carbon nanotubes by microwave CVD [J]. Carbon, 2007, 45: 543-552.
[26]
Zhu B Q, WEI G P, LI X C, et al. Preparation and growth mechanism of carbon nanotubes via catalytic pyrolysis of phenol resin [J].Mater Res Innov, 2013, in press, DIO: 10.1179/1433075X13Y.0000000125.