全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

炭化温度对掺杂改性树脂炭结构及其抗氧化性能的影响

DOI: 10.7521/j.issn.0454-5648.2014.06.16

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了炭化温度对掺杂改性树脂炭结构及其抗氧化性能的影响。借助于X射线衍射仪、红外光谱仪、扫描电子显微镜和差示扫描量热仪对掺杂改性树脂炭化后的炭结构及其抗氧化性能进行了表征。结果表明在埋炭条件下,炭化温度对掺杂改性树脂炭化后的炭结构有显著影响随炭化温度升高,掺杂改性树脂炭化后的炭结构逐渐向石墨化碳结构方向演化;当炭化温度为600℃时,掺杂物表面开始有大量碳晶须生成,晶须的直径约为50~100nm,长度约为几百纳米,随炭化温度升高,碳晶须长径比提高,但碳晶须的产量逐渐下降;当炭化温度为1000℃时,掺杂物表面生成大量的碳微球,碳微球的直径约为100~500nm。与树脂炭相比,掺杂改性树脂炭化后碳产物的氧化峰值温度提高了约80℃。

References

[1]   HASHEMI B, NEMATI Z A, FAGHIHISANI M A. Effect of resin and graphite content on density and oxidation behavior of MgO-C refractory bricks [J]. Ceram Int, 2006, 32(3): 313-319.
[2]   所俊,陈朝辉,韩卫敏,等.硅树脂高温转化陶瓷结合层连接陶瓷材料[J].硅酸盐学报,2005, 33(3): 386-390.
[3]  SUO J, CHEN Z, HAN W M, et al. J Chin Ceram Soc, 2005, 33(3): 386-390.
[4]   LUO M, LI Y W, SANG S B, et al. In situ formation of carbon nanotubes and ceramic whiskers in Al2O3 refractories with addition of Ni-catalyzed phenolic resin [J]. Mater Sci Eng A, 2012, 558: 533-542.
[5]   候琳煕,刘燕.有机累托石/环氧树脂复合材料的结构及性能[J].硅酸盐学报,2011, 39(7): 1223-1228.
[6]  HOU L X, LIU Y. J Chin Ceram Soc, 2011, 39(7): 1223-1228.
[7]   KLEMM Y, BIERMANN H, ANEZIRIS C G. Microstructure and mechanical properties of fine grained carbon-bonded Al2O3-C materials [J]. Ceram Int, 2013, 39(6): 6695-6702.
[8]  ANEZIRIS C G, BORZOV D, ULBRICHT J, et al. Phenolic resin with carbo-resin additions for improved MgO-C refractories [J]. Key Eng Mater, 2004, 264-268: 1767-1770.
[9]   KIDO N, YAMAMOTO K, KAMIIDE M, et al. Carbon nanofiber-a new trial for magnesia based brick [C]//Proceedings of the 8th Unified Internation Technical Conference on Refractories, Japan, Osaka, 2003: 264-267.
[10]   HORIKAWA T, OGAWA K, MIZUNO K, et al. Preparation and characterization of the carbonized material of phenol-formaldehyde resin with addition of various organic substances [J]. Carbon, 2003, 41(3): 465-472.
[11]   STAMATIN I, MOROZAN A, DUMITRU A, et al. The synthesis of multi-walled carbon nanotubes (MWNTs) by catalytic pyrolysis of the phenol-formaldehyde resins [J]. Physica E, 2007, 37: 44-48.
[12]   KONG Q H, ZHANG J H. Synthesis of straight and helical carbon nanotubes from catalytic pyrolysis of polyethylene [J]. Polym Degrad Stab, 2007, 92(11): 2005-2010.
[13]   CHUNG Y H, SHYANKAY J. Carbon nanotubes from catalytic pyrolysis of polypropylene [J]. Mater Chem Phys, 2005, 92: 256-259.
[14]   YI S J, FAN Z, Wu C, et al. Catalytic graphitization of furan resin carbon by yttrium [J]. Carbon, 2008, 46(2): 378-380.
[15]   DUBOIS M, NAJI A, BUISSON J P, et al. Characterization of carbonaceous materials derived from polyparaphenylene pyrolyzed at low temperature [J]. Carbon, 2000, 38(9): 1411-1417.
[16]   MORTERRA C, LOW M J D. Studies of carbon VII: the pyrolysis of a phenol-formaldehyde resin[J].Carbon, 1985, 23(5): 525-530.
[17]   TRICK K A, SALIBA T E. Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite [J]. Carbon, 1995, 33(11): 1509-1515.
[18]   MANFREDI L B, OSA O, FENANDEZ N G, et al. Structure-properties relationship for resols with different formaldehyde/phennol malar ratio [J]. Polymer, 1999, 40(13): 3867-3875.
[19]   ZHANG Y, SHEN S H, LIU Y J. The effect of titanium incorporation on the thermal stability of phenol-formaldehyde resin and its carbonization microstructure [J]. Polym Degrad Stab, 2013, 98(2): 514-518.
[20]   MIAO H Y, LUE J T, CHEN S Y, et al. Growth of carbon nanotubes on transition metal alloys by microwave-enhanced hot-filament deposition [J]. Thin Solid Film, 2005, 484: 58-63.
[21]   MERKULOV V I, LOWNDES D H, WEI Y Y, et al. Patterned growth of individual and multiple aligned carbon nanofibers [J]. Appl Phys Lett, 2000, 76: 3555-3557.
[22]   GHORBANI H, RASHIDI A M, RASTEGARI S, et al. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield [J]. Mater Res Bull, 2011, 46: 716-721.
[23]   ZHAO N Q, HE C N, JIANG Z Y, et al. Fabrication and growth mechanism of carbon nanotubes by catalytic chemical vapor deposition [J]. Mater Lett, 2006, 60(2): 159-163.
[24]   LOUCHEV O A, SATO Y, KANDA H. Growth mechanism of carbon nanotubes forests by chemical vapor deposition [J]. Appl Phys Lett, 2002, 80(15): 2752-2754.
[25]   BARTSCH K, ARNOLD B, KALTOFEN R, et al. Effect of catalyst pre-treatment on the growth of single-walled carbon nanotubes by microwave CVD [J]. Carbon, 2007, 45: 543-552.
[26]   Zhu B Q, WEI G P, LI X C, et al. Preparation and growth mechanism of carbon nanotubes via catalytic pyrolysis of phenol resin [J].Mater Res Innov, 2013, in press, DIO: 10.1179/1433075X13Y.0000000125.
[27]  

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133