BADWAL S P S, CIACCHI F T. Oxygen-ion conducting electrolyte materials for solid oxide fuel cells [J]. Ionics, 2000, 6(1-2): 1-21.
[2]
HAILE S M. Fuel cell materials and components [J]. Acta Mater, 2003, 51(19): 5981-6000.
[3]
MOBIUS H H. On the history of solid electrolyte fuel cells [J]. J Solid State Electrochem, 1997, 1: 2-16.
[4]
FRAY D J. The use of solid electrolytes in the determination of activities and the development of sensors [J]. Metall Mater Trans B, 2003, 34(5): 589-594.
[5]
LIU Q. The development of high temperature electrochemical sensors for metallurgical processes [J]. Solid State Ionics, 1996, 86: 1037-1043.
[6]
MOCHIZUKI M, MATSUOKA M, FUJIWARA R. Improvement in response of commercialized oxygen sensor [J]. Solid State Ionics, 1990, 40: 746-749.
[7]
KIUKKOLA K, WAGNER C. Measurements on galvanic cells involving solid electrolytes [J]. J Electrochem Soc, 1957, 104(6): 379-387.
[8]
GOODENOUGH J B. Oxide-ion electrolytes [J]. Annu Rev Mater Res, 2003, 33(1): 91-128.
HUANG Xiaowei, LIU Xuli, LI Xiangqi, et al. J Chin Ceram Soc, 2008, 36(11): 1669-1675.
[11]
PRATT J N. Applications of solid electrolyte in thermodynamic studies of materials:a review [J]. Metall Trans A, 1990, 21(4): 1223-1250.
[12]
[BADWAL S P S. Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity [J]. Solid State Ionics, 1992, 52(1): 23-32.
[13]
BADWAL S P S. Electrical conductivity of single crystal and polycrystalline yttria-stabilized zirconia [J]. J Mater Sci, 1984, 19(6): 1767-1776.
[14]
STRICKLER D W, CARLSON W G. Electrical conductivity in the ZrO2-rich region of several M2O3-ZrO2 systems [J]. J Am Ceram Soc, 1965, 6(48): 286-289.
[15]
DIXON J M, LAGRANGE LD, MERTEN U, et al. Electrical resistivity of stabilized zirconia at elevated temperatures [J]. J Electrochem Soc, 1963, 110(4): 276-280.
[16]
SUZUKI Y, TAKAHASHI T, NAGAE N. The behavior of electrical conductivity of Y2O3-stabilized zirconia [J]. Solid State Ionics, 1981, 3: 483-487.
[17]
MUCCILLO E N S, KLEITZ M. Ionic conductivity of fully stabilized ZrO2: MgO and blocking effects [J]. J Eur Ceram Soc, 1995, 15(1): 51-55.
[18]
BHUVANESWARI M S, SELVASEKARAPANDIAN S, VIJAYAKUMAR M, et al. Ionic conductivity studies on Mg stabilized zirconia by impedance spectroscopy [J]. Ceram Int, 2004, 30(7): 1631-1634.
[19]
WEN T L, LI X F, KUO C K et al. Conductivity of MgO-doped ZrO2 [J]. Solid State Ionics, 1986, 18: 715-719.
[20]
DURAN P, RODRIGUEZ J M, RECIO P. The ZrO2-rich region of the ZrO2-MgO system [J]. J Mater Sci, 1991, 26(2): 467-472.
[21]
[RUTMAN, D S, TAKSIS, G A, TOROPOV, Y S, et al. Electric conductivity and phase composition of solid solutions of ZrO2-CaO, ZrO2-Y2O3 and ZrO2-CeO2 at 1 000 to 1 700℃ [J]. Refractories, 1969, 10(11/12): 759-764.
[22]
CASSELTON R E W. Low field DC conduction in yttria-stablized zirconia [J]. Phys Status Solidi (a), 1970, 2(3): 571-585.
[23]
JACOBSON N S, LIU Z K, KAUFMAN L, et al. Thermodynamic modeling of the YO1.5-ZrO2 system [J]. J Am Ceram Soc, 2004, 87(8): 1559-1566.
[24]
MENG G, CHEN C, HAN X, et al. Conductivity of Bi2O3-based oxide ion conductors with double stabilizers [J]. Solid State Ionics, 1988, 28-30: 533-538.
[25]
TAKAHASHI T, ESAKA T, IWAHARA H. High oxide ion conduction in the sintered oxides of the system Bi2O3-Gd2O3 [J]. J Appl Electrochem, 1975, 5(3): 197-202.
[26]
罗文志.氧空缺控制对氧化锆离子导电率的研究[D].台湾:国立台湾科技大学,1994.
[27]
LUO Wenzhi. Ionic conductivity of zirconia with controlled oxygen vacancies(in Chinese, dissertation). Taiwan: National Taiwan University of Science and Technology, 1994.