全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

太阳能吸热器用莫来石-碳化硅陶瓷的原位合成

DOI: 10.7521/j.issn.0454-5648.2014.07.10

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用半干压成型和无压烧成技术,原位合成了用于太阳能热发电吸热器的莫来石结合碳化硅(SiC)吸热陶瓷。研究结果表明经1520℃烧成的样品B2(粒径≤61μmSiC72%,粒径≤20μmSiC18%,工业氧化铝4.64%,苏州高岭土5.36%)的综合性能最佳,其显气孔率、吸水率、体积密度和抗折强度分别为28.40%、13.35%、2.13g/cm3和44.20MPa;热震试验30次(1100℃~室温,风冷),样品无裂纹,强度增加率达52.30%;在1300℃氧化100h后,样品的氧化增重为25.43mg/cm2,氧化动力学常数为1.80×10-7kg2/(m4?s)。物相分析表明,样品的相组成为碳化硅、莫来石、石英和刚玉。显微结构分析表明,原位合成的莫来石结合于碳化硅颗粒间,赋予样品较好的抗折强度。热震试验30次后,可在样品中观察到更加致密的结构,碳化硅晶粒被树枝状微晶紧密联接,改善了样品的抗热震性。莫来石-碳化硅复相陶瓷可作为塔式太阳能热发电吸热器的潜在应用材料。

References

[1]   WU Jianfeng, LENG Guanghui , XU Xiaohong, et al. Thermal shock resistance of cordierite insitu formed with andalusite thermal storage ceramics for solar thermal power generation [J]. J Chin Ceram Soc, 2012, 40 (7): 962-969.
[2]   WU Jianfeng, FANG Binzheng, XU Xiaohong, et al. Preparation and characterization of alumina-silicon carbide-zirconia thermal storage ceramics for solar thermal power generation [J]. J Chin Ceram Soc, 2013,41 (8): 1063-1069.
[3]   YU Qiang, WANG Zhifeng, XU Ershu. Simulation and analysis of the central cavity receiver’s performance of solar thermal power tower plant [J]. Sol Energy, 2012, 86: 164-174.
[4]   AUGSBURGER G, FAVRAT D. Modeling of the receiver transient flux distribution due to cloud passages on a solar tower thermal power plant [J]. Sol Energy, 2013, 87: 42-52.
[5]   WANG Zhifeng, BAI Fengwu, LI Xin, et al. A kind of silicon carbide foam ceramic solar air heat absorber (in Chinese). CN Patent, 101122425A. 2008-02-13
[6]   RAMANI B M, AKHILESH G, RAVI K. Performance of a double pass solar air collector [J]. J Sol Energy, 2010, 84: 1929-1937.
[7]   WU Jianfeng, LIU Meng, XU Xiaohong, et al. Preparation and thermal properties of SiC based solar heat absorbing ceramic [J]. J Chin Ceram Soc, 2012, 40 (11): 1685-1692.
[8]   FEND T, HOFFSCHMIDT B, PITZ-PAAL R, et al. Porous materials as open volumetric solar receiver: Experimental determination of thermophysical and heat transfer properties [J]. Energy, 2004, 29: 823-833.
[9]   WU Z, CALIOT C, FLAMANT G, et al. Coupled radiation and flow modeling in ceramic foam volumetric solar air receivers [J]. Sol Energy, 2011, 85: 2374-2385.
[10]   RIEDEL R, PASSING G, SCHONFELDER H, et al. Synthesis of dense silicon-based ceramics at low temperature [J]. Nature, 1992, 355: 714-717.
[11]   ZAWRAH M F, ALY M H. In situ formation of Al2O3-SiC-mullite from Al-matrix composites [J]. Ceram Int, 2006, 32: 21-28.
[12]   DING Shuqiang, ZHU Sumin, ZENG Yuping, et al. Fabrication of mullite-bonded porous silicon carbide ceramics by in situ reaction bonding [J]. J Eur Ceram Soc, 2007, 27: 2095-2102.
[13]   CHEN Y F, WANG M C, HON M H. Kinetics of secondary mullite formation in kaolin-Al2O3 ceramics [J]. Scr Mater, 2004, 51: 231-235.
[14]   CHEN Y F, WANG M C, HON M H. Phase transformation and growth of mullite in kaolin ceramics [J]. J. Eur Ceram Soc, 2004, 24: 2389-2397.
[15]   CHEN Gangling, QI Hong, XING Weihong, et al. Direct preparation of macroporous mullite supports for membranes by in situ reaction sintering [J]. J Membrane Sci, 2008, 318: 38-44.
[16]   LI Shihui, DU Haiyan, GUO Anran, et al. Preparation of self-reinforcement of porous mullite ceramics through in situ synthesis of mullite whisker in fly ash body [J]. Ceram Int, 2012, 38: 1027-1032.
[17]   XU Xiaohong, MA Xionghua, WU Jianfeng, et al. In-situ preparation and thermal shock behavior of corundum-mullite-magnesium aluminate spinel composite ceramic [J]. J Chin Ceram Soc, 2012, 40 (10): 1387-1393.
[18]   MAGNANI G, ANTOLINI F, BEAULARDI L, et al. Oxidation resistance of SiC-AlN ceramics coated by oxidation-assisted-pack cementation process [J]. J Eur Ceram Soc, 2011, 31: 369-376.
[19]   COCERA N, ESPARZA N, OCANA I, et al. Oxidation resistance of highly porous CVD-SiC coated Tyranno fiber composites [J]. J Eur Ceram Soc, 2011, 31: 1155-1164.
[20]   WU Jianfeng, LENG Guanghui, Xiaohong Xu, et al. In-situ synthesis of a cordierite-andalusite composite for solar thermal storage [J]. Sol Energy Mater Sol Cells, 2013, 108: 9-16.
[21]   AKSEL C. The effect of mullite on the mechanical properties and thermal shock behavior of alumina-mullite refractory materials [J]. Ceram Int, 2003, 29: 183-188.
[22]   RENDTORFF N M, GARRIDO L B, AGLIETTI E F. Effect of the addition of mullite-zirconia to the thermal shock behavior of zircon materials [J]. Mater? Sci Eng A, 2008, 498: 208-215.
[23]  

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133