全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多孔碳酸钙陶瓷支架的制备和表征

DOI: 10.7521/j.issn.0454-5648.2014.07.07

Full-Text   Cite this paper   Add to My Lib

Abstract:

以Ca(HCO3)2为主要材料,NH4HCO3为造孔剂制备多孔碳酸钙陶瓷,并采用X射线射衍、扫描电子显微镜、压汞法和细胞实验研究其物理性能和细胞相容性。研究表明多孔碳酸钙陶瓷未分解产生氧化钙,其相组成是方解石相。扫描电子显微镜照片显示NH4HCO3分解产生的孔径在200~400μm。压汞法数据表明材料的连接孔孔径分布在50~150μm之间。实验表明MG-63细胞在支架上贴附和增殖状况良好,体现了多孔碳酸钙支架具有良好的细胞相容性,可应用于骨组织工程。

References

[1]   WANG N N, ZHOU Z, XIA L L, et al. Fabrication and characterization of bioactive beta-Ca2SiO4/PHBV composite scaffolds[J]. Mater Sci Eng C, 2013, 33(4):2294-2301.
[2]   赵康,魏俊琪,罗德福等.冷冻干燥法制备羟基磷灰石多孔支架[J].硅酸盐学报,2009,37(3):432-435.
[3]  ZHAO Kang, WEI Junqi, LUO Defu, et al. J Chin Ceram Soc, 2009,37(3):432-435.
[4]   蔡舒,王彦伟,姚康德.骨水泥自固化法制备磷酸钙多孔材料[J].硅酸盐学报,2004, 32(9):1174-1177.
[5]  CAI Shu, WANG Yanwei, YAO Kangde. J Chin Ceram Soc, 2004, 32(9):1174-1177.
[6]   KUNJALUKKAL Padmanabhan S, GERVASO F, CARROZZO M, et al. Wollastonite/hydroxyapatite scaffolds with improved mechanical, bioactive and biodegradable properties for bone tissue engineering[J]. Ceram Int, 2013, 39(1): 619-627.
[7]   GOL’DBERG MA, SMIRNOV VV, KUTSEV SV, et al. Hydroxyapatite-calcium carbonate ceramic composite materials[J]. Inorg Mater, 2010, 46(11):1269-1273.
[8]   DEMERS C, HAMDY CR, CORSI K, et al. Natural coral exoskeleton as a bone graft substitute A review[J]. Bio-Med Mater Eng, 2002, 12(1):15-35.
[9]   MONCHAU F, HIVART P, GENESTIE B, et al. Calcite as a bone substitute. Comparison with hydroxyapatite and tricalcium phosphate with regard to the osteoblastic activity[J]. Mater Sci Eng C, 2013,33(1):490-498.
[10]   SMIRNOV VV, BAKUNOVA NV, BARINOV SM, et al. Effect of ripening time on the sintering of CaCO3 powders and the properties of the resultant ceramics[J]. Inorg Mater, 2012, 48(5):544-548.
[11]   LUCAS A, GAUDE J, CAREL C, et al. A synthetic aragonite-based ceramic as a bone graft substitute and substrate for antibiotics[J]. Int J Inorg Mater, 2001,3(1):87-94.
[12]   LEMOS AF, FERREIRA JMF. Porous bioactive calcium carbonate implants processed by starch consolidation[J]. Mater Sci Eng C, 2000,11(1):35-40.
[13]   LEE Y, HAHM YM, MATSUYA S, et al. Development of macropores in calcium carbonate body using novel carbonation method of calcium hydroxide/sodium chloride composite[J]. J Mater? Sci, 2007,42(14):5728-5735.
[14]   YU H D, ZHANG ZY, WIN KY, et al. Bioinspired fabrication of 3D hierarchical porous nanomicrostructures of calcium carbonate for bone regeneration[J]. Chem Commun, 2010,46(35):6578-6580.
[15]   TAVANGAR A, TAN B, VENKATAKRISHNAN K. Synthesis of three-dimensional calcium carbonate nanofibrous structure from eggshell using femtosecond laser ablation[J]. J nanobiotechnol, 2011;9:1.
[16]   LIU H R, XIA L L, et al. Fabrication and characterization of novel hydroxyapatite/porous carbon composite scaffolds[J]. Mater Lett, 2012,66(1):36-38.
[17]   DING M, DANIELSEN C C, HVID I, et al. Three-dimensional microarchitecture of adolescent cancellous bone[J]. Bone, 2012, 51(5):953-960.
[18]   REIGNIER J, HUNEAULT M A. Preparation of interconnected poly(ε-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching[J]. Polymer, 2006,47(13): 4703-4717.
[19]  

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133