OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
碳化硅材料热导率计算研究进展
DOI: 10.14062/j.issn.0454-5648.2015.03.03
Abstract:
从声子散射机制出发,介绍了SiC热导率的温度特性和微观导热机理。综述了SiC单晶热导率的2种主要计算方法。Boltzmann-弛豫时间近似(RTA)适用于各个温度段的热导率计算,而分子动力学方法更适用于高温热导率计算。分子动力学方法相比于Boltzmann-RTA方法的优点在于它可以考虑所有高次项的非谐作用。介绍了3种SiC陶瓷热导率近似计算模型,包括界面热阻模型、Debye-Callaway模型及多相系统热导率模型。下一步研究的主要方向仍然是优化计算模型及减少拟合参数。
References
[1] | ? 王引书,?李晋闽,?林兰英.?SiC单晶的生长及其器件研制进展[J].?材料研究学报,?2009,?12(3):?233–238. WANG?Yinshu,?LI?Jinmin,?LIN?Lanying.?Chin?J?Mater?Res(in?Chinese),?2009,?12(3):?233–238.????? [2] 佘继红,?江东亮.?碳化硅陶瓷的发展与应用[J].?陶瓷工程,?1998,?32(3):?3–11.
|
[2] | SHE?Jihong,?JIANG?Dongliang.?Ceram?Eng(in?Chinese),?1998,?32(3):?3–11. 陈明和,?徐洁.?SiC陶瓷在航天器高温结构件研制中的应用[J].?南京航空航天大学学报,?2000,?32(2):?132–136.
|
[3] | CHEN?Minghe,?XU?Jie.?J?Nanjing?Univ?Aeronautics?Astronautics(in?Chinese),?2000,?32(2):?132–136. 邹世钦,?张长瑞,?周新贵,?等.?碳纤维增强?SiC?陶瓷复合材料的研究进展[J].?高科技纤维与应用,?2003,?28(2):?15–20.
|
[4] | ZOU?Shiqin,?ZHANG?Changrui,?ZHOU?Xingui,?et?al.?Hi-Tech?Fiber?Appl(in?Chinese),?2003,?28(2):?15–20. KRENKEL?W,?BERNDT?F.?C/C–SiC?composites?for?space?applications?and?advanced?friction?systems[J].?Mater?Sci?Eng:?A,?2005,?412(1):?177–181. [6] 杨尚林.?材料物理导论[M].?2版.?哈尔滨:?哈尔滨工业大学出版社,?2004:?31–32. [7] 黄昆.?固体物理学[M].?1版.?北京:?高等教育出版社,?2012:?142–148. [8] BERMAN?R.?Thermal?conductivity?in?solids?[M].?Clarendon,?Oxford,?1976:?13–14. [9] 李懋强.?热学陶瓷——性能·测试·工艺[M].?1版.?北京:?中国建材工业出版社,?2013:?35–36.? [10] MORELLI?D?T,?HEREMANS?J?P,?SLACK?G?A.?Estimation?of?the?isotope?effect?on?the?lattice?thermal?conductivity?of?group?IV?and?group?III-V?semiconductors[J].?Phys?Rev?B,?2002,?66(19):?195304. [11] NAN?C?W,?BIRRINGER?R.?Determining?the?Kapitza?resistance?and?the?thermal?conductivity?of?polycrystals:?A?simple?model[J].?Phys?Rev?B,?1998,?57(14):?8264. [12] WANG?Z.?Thermal?Conductivity?of?Polycrystalline?Semiconductors?and?Ceramics?(DB/OL).?America:?University?of?California,?2012.?http://escholarship.org/uc/item/06r8376h#page-1.? [13] SLACK?G?A.?Nonmetallic?crystals?with?high?thermal?conductivity[J].?J?Phys?Chem?Solids,?1973,?34(2):?321–335. [14] WATARI?K,?NAKANO?H,?SATO?K,?et?al.?Effect?of?grain?boundaries?on?thermal?conductivity?of?silicon?carbide?ceramic?at?5?to?1300?K[J].?J?Am?Ceram?Soc,?2003,?86(10):?1812–1814.? [15] NAKANO?H,?WATARI?K,?KINEMUCHI?Y,?et?al.?Microstructural?characterization?of?high?thermal?conductivity?SiC?ceramics[J].?J?Eur?Ceram?Soc,?2004,?24(14):?3685–3690.? [16] PEIERLS?R.?On?the?kinetic?theory?of?thermal?conduction?in?crystals[J].?Ann?Phys,?1929,?3:?1055–?1101.? [17] CALLAWAY?J.?Model?for?lattice?thermal?conductivity?at?low?temperatures[J].?Phys?Rev,?1959,?113(4):?1046. [18] JOSHI?R?P,?NEUDECK?P?G,?FAZI?C.?Analysis?of?the?temperature?dependent?thermal?conductivity?of?silicon?carbide?for?high?temperature?applications[J].?J?Appl?Phys,?2000,?88(1):?265–269. [19] 王琨.?掺杂?3C-SiC?热学和光电性能的理论研究[D].?秦皇岛:?燕山大学,?2012.
|
[5] | WANG?Kun.?Theoretical?study?for?thermal?and?optical?performance?of?doped?3C-SiC?(in?Chinese,?dissertation).?Qinhuangdao:?Yanshan?University,?2012. BROIDO?D?A,?MALORNY?M,?BIRNER?G,?et?al.?Intrinsic?lattice?thermal?conductivity?of?semiconductors?from?first?principles[J].?Appl?Phys?Lett,?2007,?91(23):?231922. [21] LINDSAY?L,?BROIDO?D?A,?REINECKE?T?L.?Ab?initio?thermal?transport?in?compound?semiconductors[J].?Phys?Rev?B,?2013,?87(16):?165201. [22] SCHELLING?P?K,?PHILLPOT?S?R,?KEBLINSKI?P.?Comparison?of?atomic-level?simulation?methods?for?computing?thermal?conductivity[J].?Phys?Rev?B,?2002,?65(14):?144306. [23] 陈连锋.?碳化硅多型体及纳米晶体热传导的分子动力学研究[D].?上海:?中国科学院上海硅酸盐研究所,?2010.
|
[6] | CHEN?Lianfeng.?Molecular?dynamics?simulation?on?thermal?conductivities?of?SiC?polytypes?and?nano-crystal?(in?Chinese,?dissertation).?Shanghai:?Shanghai?Institute?of?Ceramics,?Chinese?Academy?of?Sciences,?2010.? GREEN?M?S.?Markoff?random?processes?and?the?statistical?mechanics?of?time-dependent?phenomena.?II.?irreversible?processes?in?fluids[J].?J?Chem?Phys,?1954,?22(3):?398–413. [25] KUBO?R.?The?fluctuation-dissipation?theorem[J].?Rep?Prog?Phys,?1966,?29(1):?255. [26] LI?J,?PORTER?L,?YIP?S.?Atomistic?modeling?of?finite-temperature?properties?of?crystalline?β-SiC:?II.?Thermal?conductivity?and?effects?of?point?defects[J].?J?Nucl?Mater,?1998,?255(2):?139–152. [27] KAWAMURA?T,?HORI?D,?KANGAWA?Y,?et?al.?Thermal?conductivity?of?SiC?calculated?by?molecular?dynamics[J].?Jpn?J?Appl?Phys,?2008,?7(12R):?8898. [28] WANG?Z?H,?ZHANG?L?Y,?MENG?X.?Analysis?of?size?effect?and?anisotropy?of?6H–SiC?thermal?conductivity[J].?Int?J?Mater?Res,?2013,?104(6):?590–593. [29] AMRIT?J.?Grain?boundary?Kapitza?resistance?and?grain-arrangement?induced?anisotropy?in?the?thermal?conductivity?of?polycrystalline?niobium?at?low?temperatures[J].?J?Phys?D:?Appl?Phys,?2006,?39(20):?4472. [30] LIMARGA?A?M,?CLARKE?D?R.?The?grain?size?and?temperature?dependence?of?the?thermal?conductivity?of?polycrystalline,?tetragonal?yttria-stabilized?zirconia[J].?Appl?Phys?Lett,?2011,?98(21):?211906. [31] CROCOMBETTE?J?P,?GELEBART?L.?Multiscale?modeling?of?the?thermal?conductivity?of?polycrystalline?silicon?carbide[J].?J?Appl?Phys,?2009,?106(8):?083520. [32] MALDOVAN?M.?Thermal?energy?transport?model?for?macro-to-?nanograin?polycrystalline?semiconductors[J].?J?Appl?Phys,?2011,?10(11):?114310. [33] KINOSHITA?T,?MUNEKAWA?S.?Effect?of?grain?boundary?segregation?on?thermal?conductivity?of?hot-pressed?silicon?carbide[J].?Acta?Mater,?1997,?5(5):?2001–2012. [34] KINGERY?W?D.?Thermal?conductivity:?XIV,?conductivity?of?multicomponent?system[J].?J?Am?Ceram?Soc,?1959,?42(12):?617–627. [35] KINGERY?W?D,?BOWEN?H?K,?UHLMANN?D?R.?陶瓷导论[M].?清华大学新型陶瓷与精细工艺国家重点实验室译.?2版.?北京:高等教育出版社,?2010:?536–543.
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|