全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

磷化钴微米花的制备及电化学性能

DOI: 10.14062/j.issn.0454-5648.2015.04.27

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过简单的溶剂热,以水(H2O)和无水乙醇(EtOH)作为混合溶剂,采用十六烷基三甲基溴化铵(CTAB)为表面活性剂

References

[1]  phosphide (Cu3P): A possible negative electrode material for lithium
[2]  batteries [J]. Electrochem Commun, 2004, 6(3): 263–267.
[3]  王亚平. Fe、Co基硼化物、磷化物的制备及电化学性能的研究[D].
[4]  天津: 南开大学, 2011.
[5]  WANG Yaping. Synthesis and electrochemical properties of Fe-,
[6]  自组装特性[J]. 天津大学学报, 2006, 39(1): 5–9.
[7]  LI Wei, ZHANG Ming, ZHANG JIN1i, et al. J Tianjin Univ (in
[8]  Chinese), 2006, 39(1): 5–9.
[9]  HOU H W, PENG Q, ZHANG S Y, et al. A “user-friendly” chemical
[10]  approach towards paramagnetic cobalt phosphide hollow structures:
[11]  ? LAVELA P, ORTIZ G F, TIRADO J L, et al. High-performance
[12]  transition metal mixed oxides in conversion electrodes: a combined
[13]  spectroscopic and electrochemical study [J]. J Phys Chem C, 2007,
[14]  111(38): 14238–14246.
[15]  CUI Z M, JIANG L Y, SONG W G, et al. High-yield gas-liquid
[16]  interfacial synthesis of highly dispersed Fe3O4 nanocrystals and their
[17]  application in lithium-ion batteries [J]. Chem Mater, 2009, 21(6):
[18]  1162–1166.
[19]  electrodes for lithium ion cells [J]. Solid State Ionics, 1998, 113-115:
[20]  51–56.
[21]  PEREIRA N, KLEIN L C, AMATUCCI G G. The electrochemistry of
[22]  Zn3N2 and LiZnN a lithium reaction mechanism for metal nitride
[23]  electrodes [J]. J Electrochem Soc, 2002, 149(3): A262–A271.
[24]  SOUZA D C S, PRALONG V, JACOBSON A J, et al. A reversible
[25]  solid-state crystalline transformation in a metal phosphide induced by
[26]  redox chemistry [J]. Science, 2002, 296(5575): 2012–2015.
[27]  Electrochem Commun, 2002, 4(6): 516–520.
[28]  ZHANG Z S, YANG Jun, NULI Yanna, et al. CoPx synthesis and
[29]  lithiation by ball-milling for anode materials of lithium ion cells [J].
[30]  Solid State Ionics, 2005, 176(7/8): 693–697.
[31]  WANG Ke, YANG Jun, XIE Jingying, et al. Electochemical reactions
[32]  of lithium with CuP2 and Li1.75Cu1.25P2 synthesized by ball-milling [J].
[33]  Electrochem Commun, 2003, 5(6): 480–483.
[34]  MAUVERNAY B, DOUBLET M L, MONCONDUIT L. Redox
[35]  mechanism in the binary transition metal phosphide Cu3P [J]. J Phys
[36]  Chem Solids, 2006, 67(5/6): 1252–1257.
[37]  BICHAT M P, PASCAL J L, GILLOT F, et al. Electrochemical
[38]  lithium insertion in Zn3P2 zinc phosphide [J]. Chem Mater, 2005,
[39]  17(26): 6761–6771.
[40]  HWANG H, KIM M G, KIM Y, et al. The electrochemical lithium
[41]  reactions of monoclinic ZnP2 material [J]. J Mater Chem, 2007, 17(30):
[42]  3161–3166.
[43]  LEON B, CORREDOR J I, TIRADO J L, et al. On the mechanism of
[44]  the electrochemical reaction of tin phosphide with lithium [J]. J
[45]  Electrochem Soc, 2006, 153(10): A1829–A1834.
[46]  闫俊美, 杨勇. 非碳类新型锂离子蓄电池负极材料研究进展[J]. 电
[47]  源技术, 2004, 28(7): 435–439.
[48]  YAN Junmei, YANG Yong. Chin J Power Sources (in Chinese), 2004,
[49]  28(7): 435–439.
[50]  PFEIFFER H, TANCRET F, BICHAT M P, et al. Air stable copper
[51]  POIZOT P, LARUELLE S, GRUGEON S, et al. Rationalization of the
[52]  low-potential reactivity of 3d-metal-based inorganic compounds
[53]  toward Li [J]. J Electrochem Soc, 2002, 149(9): A1212–A1217.
[54]  BROUSSE T, LEE S M, PASQUEREAU L, et al. Composite negative
[55]  ALCANTARA R, TIRADO J L, JUMAS J C, et al. Electrochemical
[56]  reaction of lithium with CoP3 [J]. J Power Sources, 2002, 109(2):
[57]  308–312.
[58]  PRALONG V, SOUZA D. C. S., LEUNG K T, et al. Reversible
[59]  lithium uptake by CoP3 at low potential: role of the anion [J].
[60]  Co-based borides and phosphides (in Chinese, Dissertation). Tianjin:
[61]  Nankai University, 2011.
[62]  LIU S L, YAN L, LI H L. Solvothermal synthesis of flower-like Co2P
[63]  nanostructures and its electrochemical performance [J]. Sci Adv Mater,
[64]  2014, 6(4): 746–750.
[65]  LIU S L, LI S, WANG J P, et al. Surfactant-assisted synthesis andelectrochemical performances of Cu3P dendrites [J]. Mater Res Bull,
[66]  2012, 47(11): 3352–3356.
[67]  VILLEVIEILLE C, ROBERT F, TABERNA P L, et al. The good
[68]  reactivity of lithium with nanostructured copper phosphide [J]. J Math
[69]  Chem, 2008, 18(48): 5956–5960.
[70]  李韡, 张铭, 张金利, 等. 乙醇-水溶液中十六烷基三甲基溴化按的
[71]  preparation, characterization, and formation mechanism of Co2P hollow
[72]  spheres and tubes [J]. J Inorg Chem, 2005, 2005(13): 2625–2630.
[73]  GAO S M, LU J, CHEN N, et al. Aqueous synthesis of III–V
[74]  semiconductor GaP and InP exhibiting pronounced quantum
[75]  confinement [J]. Chem Commun, 2002, 24: 3064–3065.
[76]  ZENG C Y, ZHANG W X, DING S X, et al. Oriented attachment
[77]  growth of ultra-long Ag2Se crystalline nanowires via water
[78]  evaporation-induced self-assembly [J]. Cryst Eng Comm, 2013, 15(25):
[79]  5127–5133.
[80]  吴济今. 金属磷化物的锂电化学[D]. 上海: 复旦大学, 2009.
[81]  WU Jijin. Lithium chemistry of metal phosphides (in Chinese,
[82]  Dissertation). Shanghai: Fudan University, 2009.
[83]  KIM Y U, LEE S I, LEE C K, et al. Enhancement of capcity and
[84]  cycle-life of Sn4+deltaP3(0<=delta<=l) anode for lithium secondary
[85]  batteries [J]. J Power Sources. 2005, 141(1): 163–166.
[86]  TARASCON J M, MORCRETTE M, DUPONT L, et al. On the
[87]  electrochemical reactivity mechanism of CoSb3 vs. lithium [J]. J
[88]  Electrochem Soc, 2003, 150(6): A732–A741.
[89]  XIANG J Y, WANG X L, XIA X H, et al. Enhanced high rate
[90]  properties of ordered porous Cu2O film as anode for lithium ion
[91]  batteries [J]. Electrochim Acta, 2010, 55(17): 4921–4925.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133