[1] | phosphide (Cu3P): A possible negative electrode material for lithium
|
[2] | batteries [J]. Electrochem Commun, 2004, 6(3): 263–267.
|
[3] | 王亚平. Fe、Co基硼化物、磷化物的制备及电化学性能的研究[D].
|
[4] | 天津: 南开大学, 2011.
|
[5] | WANG Yaping. Synthesis and electrochemical properties of Fe-,
|
[6] | 自组装特性[J]. 天津大学学报, 2006, 39(1): 5–9.
|
[7] | LI Wei, ZHANG Ming, ZHANG JIN1i, et al. J Tianjin Univ (in
|
[8] | Chinese), 2006, 39(1): 5–9.
|
[9] | HOU H W, PENG Q, ZHANG S Y, et al. A “user-friendly” chemical
|
[10] | approach towards paramagnetic cobalt phosphide hollow structures:
|
[11] | ? LAVELA P, ORTIZ G F, TIRADO J L, et al. High-performance
|
[12] | transition metal mixed oxides in conversion electrodes: a combined
|
[13] | spectroscopic and electrochemical study [J]. J Phys Chem C, 2007,
|
[14] | 111(38): 14238–14246.
|
[15] | CUI Z M, JIANG L Y, SONG W G, et al. High-yield gas-liquid
|
[16] | interfacial synthesis of highly dispersed Fe3O4 nanocrystals and their
|
[17] | application in lithium-ion batteries [J]. Chem Mater, 2009, 21(6):
|
[18] | 1162–1166.
|
[19] | electrodes for lithium ion cells [J]. Solid State Ionics, 1998, 113-115:
|
[20] | 51–56.
|
[21] | PEREIRA N, KLEIN L C, AMATUCCI G G. The electrochemistry of
|
[22] | Zn3N2 and LiZnN a lithium reaction mechanism for metal nitride
|
[23] | electrodes [J]. J Electrochem Soc, 2002, 149(3): A262–A271.
|
[24] | SOUZA D C S, PRALONG V, JACOBSON A J, et al. A reversible
|
[25] | solid-state crystalline transformation in a metal phosphide induced by
|
[26] | redox chemistry [J]. Science, 2002, 296(5575): 2012–2015.
|
[27] | Electrochem Commun, 2002, 4(6): 516–520.
|
[28] | ZHANG Z S, YANG Jun, NULI Yanna, et al. CoPx synthesis and
|
[29] | lithiation by ball-milling for anode materials of lithium ion cells [J].
|
[30] | Solid State Ionics, 2005, 176(7/8): 693–697.
|
[31] | WANG Ke, YANG Jun, XIE Jingying, et al. Electochemical reactions
|
[32] | of lithium with CuP2 and Li1.75Cu1.25P2 synthesized by ball-milling [J].
|
[33] | Electrochem Commun, 2003, 5(6): 480–483.
|
[34] | MAUVERNAY B, DOUBLET M L, MONCONDUIT L. Redox
|
[35] | mechanism in the binary transition metal phosphide Cu3P [J]. J Phys
|
[36] | Chem Solids, 2006, 67(5/6): 1252–1257.
|
[37] | BICHAT M P, PASCAL J L, GILLOT F, et al. Electrochemical
|
[38] | lithium insertion in Zn3P2 zinc phosphide [J]. Chem Mater, 2005,
|
[39] | 17(26): 6761–6771.
|
[40] | HWANG H, KIM M G, KIM Y, et al. The electrochemical lithium
|
[41] | reactions of monoclinic ZnP2 material [J]. J Mater Chem, 2007, 17(30):
|
[42] | 3161–3166.
|
[43] | LEON B, CORREDOR J I, TIRADO J L, et al. On the mechanism of
|
[44] | the electrochemical reaction of tin phosphide with lithium [J]. J
|
[45] | Electrochem Soc, 2006, 153(10): A1829–A1834.
|
[46] | 闫俊美, 杨勇. 非碳类新型锂离子蓄电池负极材料研究进展[J]. 电
|
[47] | 源技术, 2004, 28(7): 435–439.
|
[48] | YAN Junmei, YANG Yong. Chin J Power Sources (in Chinese), 2004,
|
[49] | 28(7): 435–439.
|
[50] | PFEIFFER H, TANCRET F, BICHAT M P, et al. Air stable copper
|
[51] | POIZOT P, LARUELLE S, GRUGEON S, et al. Rationalization of the
|
[52] | low-potential reactivity of 3d-metal-based inorganic compounds
|
[53] | toward Li [J]. J Electrochem Soc, 2002, 149(9): A1212–A1217.
|
[54] | BROUSSE T, LEE S M, PASQUEREAU L, et al. Composite negative
|
[55] | ALCANTARA R, TIRADO J L, JUMAS J C, et al. Electrochemical
|
[56] | reaction of lithium with CoP3 [J]. J Power Sources, 2002, 109(2):
|
[57] | 308–312.
|
[58] | PRALONG V, SOUZA D. C. S., LEUNG K T, et al. Reversible
|
[59] | lithium uptake by CoP3 at low potential: role of the anion [J].
|
[60] | Co-based borides and phosphides (in Chinese, Dissertation). Tianjin:
|
[61] | Nankai University, 2011.
|
[62] | LIU S L, YAN L, LI H L. Solvothermal synthesis of flower-like Co2P
|
[63] | nanostructures and its electrochemical performance [J]. Sci Adv Mater,
|
[64] | 2014, 6(4): 746–750.
|
[65] | LIU S L, LI S, WANG J P, et al. Surfactant-assisted synthesis andelectrochemical performances of Cu3P dendrites [J]. Mater Res Bull,
|
[66] | 2012, 47(11): 3352–3356.
|
[67] | VILLEVIEILLE C, ROBERT F, TABERNA P L, et al. The good
|
[68] | reactivity of lithium with nanostructured copper phosphide [J]. J Math
|
[69] | Chem, 2008, 18(48): 5956–5960.
|
[70] | 李韡, 张铭, 张金利, 等. 乙醇-水溶液中十六烷基三甲基溴化按的
|
[71] | preparation, characterization, and formation mechanism of Co2P hollow
|
[72] | spheres and tubes [J]. J Inorg Chem, 2005, 2005(13): 2625–2630.
|
[73] | GAO S M, LU J, CHEN N, et al. Aqueous synthesis of III–V
|
[74] | semiconductor GaP and InP exhibiting pronounced quantum
|
[75] | confinement [J]. Chem Commun, 2002, 24: 3064–3065.
|
[76] | ZENG C Y, ZHANG W X, DING S X, et al. Oriented attachment
|
[77] | growth of ultra-long Ag2Se crystalline nanowires via water
|
[78] | evaporation-induced self-assembly [J]. Cryst Eng Comm, 2013, 15(25):
|
[79] | 5127–5133.
|
[80] | 吴济今. 金属磷化物的锂电化学[D]. 上海: 复旦大学, 2009.
|
[81] | WU Jijin. Lithium chemistry of metal phosphides (in Chinese,
|
[82] | Dissertation). Shanghai: Fudan University, 2009.
|
[83] | KIM Y U, LEE S I, LEE C K, et al. Enhancement of capcity and
|
[84] | cycle-life of Sn4+deltaP3(0<=delta<=l) anode for lithium secondary
|
[85] | batteries [J]. J Power Sources. 2005, 141(1): 163–166.
|
[86] | TARASCON J M, MORCRETTE M, DUPONT L, et al. On the
|
[87] | electrochemical reactivity mechanism of CoSb3 vs. lithium [J]. J
|
[88] | Electrochem Soc, 2003, 150(6): A732–A741.
|
[89] | XIANG J Y, WANG X L, XIA X H, et al. Enhanced high rate
|
[90] | properties of ordered porous Cu2O film as anode for lithium ion
|
[91] | batteries [J]. Electrochim Acta, 2010, 55(17): 4921–4925.
|